Microsoft ASP.NET
Hosting Deployment Guide
Published: July 2008
Abstract

This white paper provides an overview of the features and benefits of Microsoft® ASP.NET 3.5. Hosters who offer ASP.NET hosting will be able to use the setup and configuration recommendations to integrate ASP.NET into their hosting solution. This whitepaper also includes information that enables hosters who have not yet implemented ASP.NET to evaluate requirements for implementing ASP.NET 3.5 into their hosting environment.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft, MSDN, Visual Web Developer, Windows, and Windows Server, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Overview

1ASP.NET Versions

2New Features of ASP.NET 2.0 and Later

2Trust Levels and ASP.NET Features

3Trust Level Recommendations for Hosters

4Customizing Trust Level Policy

5Locking the Trust Level

5Setting Multiple Trust Levels for Applications

6LINQ and Code Access Security (ASP.NET 3.5)

6Using LINQ with Medium Trust

6Using LINQ with High Trust

7Additional Resources

7Providers in ASP.NET

7Configuring a Database for Use with ASP.NET Providers

8Frequently Asked Questions

9Running ASP.NET 1.1 and ASP.NET 2.0 and Later Applications Together

9Backward Compatibility

9Running ASP.NET Side-by-Side

10Internet Information Services 6.0 (IIS 6.0)

11Internet Information Services 7.0 (IIS 7.0)

11Additional Resources

12SMTP Configuration

12SMTP Configuration Example

12ASP.NET Configuration API

13Additional Resources

13Enabling WebPermission in Medium Trust

14How to Enable defaultProxy

15How to Enable WebPermission in a Custom Trust Level

15Common Location for Microsoft AJAX Library

16Hosting Scenarios and Recommendations

16Trust Levels for a Shared Hosting Environment

16Hosting and Isolating Multiple Applications

16Isolating by Application Pool

17Enabling Additional Worker Processes Using SharedWPDesktop

17Using ASP.NET in a Web Farm

18Making Sure That Application State Will Be Maintained in a Web Farm

18New Features That Affect Hosters

18.NET Framework 3.5 and Later

18Using LINQ in Medium and High Trust (ASP.NET 3.5)

18.NET Framework 2.0 and Later

18Access Databases: Using OLE DB and ODBC Providers in Medium Trust

19Application Idle Timeout: Shutting Down Inactive Application Domains

20Performance Benefits in ASP.NET 2.0 and Later

20Configuring Garbage Collection to Improve Performance

20ASP.NET Performance on the x64 Platform

21WOW64 Compatibility: Running 32-bit Applications on a 64-bit Server

21Deploying ASP.NET Step-by-Step

23Additional Resources

Overview

ASP.NET is a powerful set of tools for building dynamic, high-performance, data-driven Web applications. With ASP.NET, customers can quickly create Web pages and applications. Features such as membership, personalization, and themes provide system-level functionality that would normally require extensive developer coding. In addition, Microsoft Visual Web Developer™ 2008 Express Edition, which is available for download at no cost, provides everything that developers need to easily design, build, and deploy powerful, dynamic Web applications.

ASP.NET also provides benefits for hosted environments. For example, ASP.NET includes support for shutting down inactive applications and for locking down rogue applications. Hosters can also configure health monitoring to set thresholds and severity levels for monitoring the health of ASP.NET.

Discrete feature throttling enables server administrators to dynamically add and remove feature support for applications within individual customer applications. Powerful Starter Kits can be offered separately or easily integrated in a site, providing compelling features for end-user customers.

This paper provides information about how to configure ASP.NET and IIS in shared-hosting environments. This includes any environment where multiple discrete users will be running Web sites on a single server computer or Web farm.

ASP.NET Versions

ASP.NET is part of the .NET Framework. The .NET Framework was released initially as version 1.0 in 2002, which was upgraded with the version 1.1 release in 2003. The .NET Framework version 2.0 was released in 2005. The .NET Framework version 3.0 was released in 2006, and version 3.5 was released in 2008. Although ASP.NET does not have version numbers that are independent of the .NET Framework, for convenience this paper uses the common convention of referring to ASP.NET 2.0, ASP.NET 3.0, and so on.

The version numbering for the .NET Framework (and by extension for ASP.NET) can cause some confusion. Versions 3.0 and 3.5 of the .NET Framework are not complete replacements for 2.0. Instead, these releases added features to the core .NET Framework 2.0 functionality, which remained almost unchanged. Fundamentally, the .NET Framework therefore comes in only two versions: version 1.1 and version 2.0. Information about versions 3.0 or 3.5 of the .NET Framework or of ASP.NET therefore refer to new features added since the 2.0 release, or to the small number of changes made to core 2.0 functionality.
The Windows Server® 2003 operating system comes with the .NET Framework version 1.1 pre-installed. The Windows Server 2008 operating system comes with the .NET Framework version 3.0 installed. (As explained earlier, this means that Windows Server 2008 comes with the .NET Framework version 2.0 pre-installed plus the new features that were added for the 3.0 release.) For both versions of Windows Server, later versions of the .NET Framework can be downloaded and installed separately. For more information, see the .NET Framework Development Center on the Microsoft Web site.
In addition, the ASP.NET team has created extensions that incorporate new functionality, such as support for AJAX and for the MVC development pattern. In order to make the functionality available as quickly as possible, the team has occasionally released extensions to ASP.NET. The extensions are available as separate pieces that can be downloaded and installed. The functionality in the extensions is incorporated (or intended to be incorporated) into subsequent releases of the .NET Framework. For example, AJAX support was initially released as an add-on installation that could be used with ASP.NET 2.0 or ASP.NET 3.0. The AJAX functionality was subsequently incorporated into ASP.NET 3.5. From the hosting perspective, this means that if you have installed ASP.NET 3.5, AJAX functionality is an inherent part of ASP.NET. However, if your server is running versions 2.0 or 3.0 of the .NET Framework, you would need to install the ASP.NET AJAX extension in order to offer this functionality for hosted sites. (AJAX functionality is not available for ASP.NET 1.1.)
This whitepaper addresses features that are available in the current release of ASP.NET (version 3.5). Although the current release number for ASP.NET is 3.5, ASP.NET runs on the .NET Framework version 2.0. This means that hosting any version of ASP.NET between 2.0 and 3.5 is fundamentally the same. Unless otherwise noted, the information presented in this whitepaper applies to ASP.NET 2.0 and later releases. Features or issues that apply to a specific release are called out in the text.

Examples of features that are new for version 3.5 include the following:

· ASP.NET AJAX. The ASP.NET AJAX support that was previously available as a downloadable extension to .the NET Framework 2.0 is now integrated into the framework and is supported in Visual Studio.

· The LinqDataSource control. This control provides data source access to LINQ to SQL classes, which are a new feature the .NET Framework 3.5.

· The ListView and DataPager controls. These new data controls provide unprecedented flexibility for displaying data, using templates that provide full control of markup for creating UI that enables users to list, edit, and insert data. The DataPager control can be put anywhere on the page and not restricted to being in the data control it is associated with.

New Features of ASP.NET 2.0 and Later

ASP.NET 2.0 introduced features and functionality that enhanced the earlier versions of ASP.NET (versions 1.0 and 1.1). As noted previously, these new features are part of the new current release of ASP.NET as well. Some of these differences or features include the following:

· Reliability. Ability to shut down inactive application domains. (An application domain is where an application executes, and it is isolated to a certain extent from other applications within the same process.)
· Code access security and the GAC. Strong-named assemblies are supported outside the global assembly cache (GAC). Assemblies do not need to be placed inside the GAC unless they need Full trust or need to be shared globally.

· Code access security and OLE DB and ODBC. Access to the event log, to the OLE DB API, and to the Open Database Connectivity (ODBC) API do not demand Full trust. (However, by default, permissions to access these APIs are not granted to Medium trust applications.)

· Configuration file changes. Machine-wide configuration settings for all Web applications on a server are maintained in a machine-level Web.config file instead of in the Machine.config file. The machine-level Web.config file is located in the following directory:

\%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\

· Configuration file encryption. ASP.NET supports a protected configuration feature to enable you to encrypt sections of your Web.config and Machine.config files. You can use either the Data Protection application programming interface (DPAPI) or Rivest-Shamir-Adleman (RSA) encryption. This feature is particularly useful for encrypting connection strings and account credentials.

Trust Levels and ASP.NET Features

Trust levels allow you to define security rules. They define what types of operations an application can perform, such as reading from disk or accessing the registry. While each trust level has an associated policy file, Full trust does not. When an application runs with Full trust, code access security places no restrictions on the resources and operations that the application can access. Resource access is based solely on operating system security and on Microsoft Windows® access control lists (ACLs). Full trust is mapped to an internal handler, so it is not possible to edit the operations that an application can perform. Full trust is effectively the absence of an application domain policy, and therefore it never has an associated policy file.

To protect ASP.NET applications, you can restrict the resources the application can access and the privileged operations it can perform. You do this by setting the <trust> element to a predefined trust level in either the machine-level Web.config file or the application’s Web.config file.

The following list describes the predefined trust levels:

· Full — Applications that run at Full trust level can execute arbitrary native code in the process context in which they run. Because of the inherent risks that come with running in Full trust mode, this mode it is not recommended in a shared environment except when every Web site uses its own application pool and its own application pool identity.
Important The default trust level is Full trust. You should evaluate the security requirements for your environment and set the trust level appropriately.

· High — Code in High trust applications can use most .NET Framework permissions that support partial trust. This mode is often appropriate for trusted applications that you want to run with fewer privileges in order to mitigate risks. For example, this level provides the same access as Full trust, but restricts access to unmanaged code and COM interop.

· Medium — Code in Medium trust applications can read and write in its own application directories and can interact with SQL Server™ databases. (However, by default, permissions to access OLE DB and ODBC are not granted to Medium trust applications.) Medium trust is the recommended setting for a shared server, because it allows connections to SQL Server databases and restricts all other permissions to the application root structure.

· Low — Code in Low trust applications can read its own application resources but cannot make any out-of-process calls (calls to a database, to the network, and so on). By using Low trust, you effectively lock applications down to their application directory and remove all access to system resources.

· Minimal — Code in Minimal trust applications can execute but cannot interact with any protected resources. Minimal trust may be appropriate for mass hosting sites that want to support dynamic generation of Hypertext Markup Language (HTML) and isolated business logic.

The definition of the trust levels is essentially the same from ASP.NET version 1.1 through version 3.5. However, some of the permissions or operations that can be granted at each trust level vary slightly. For example, in Medium trust, code in ASP.NET 2.0 and later can enable access to OLE DB APIs.

For more information about trust levels in ASP.NET, see Working with Medium Trust in ASP.NET on the Microsoft MSDN® TV Web site. For information about how to run ASP.NET applications in a hosted environment, including trust levels and code access security, download the Microsoft Solution for Windows-based Hosting version 3.5 tool kit from the Microsoft download center.
Trust Level Recommendations for Hosters

The following are general recommendations for trust levels for shared-hosting sites:

· Hosters should not use Full trust in shared-hosting scenarios. For Web servers that are Internet-facing, Medium trust is recommended. When applications run under Full trust, they are fully trusted on the server. Even if they are isolated by process and even when permissions are limited, applications can access each others’ content, and they can access many system resources, such as the registry and event logs.
· Each Web site should be run in its own application pool.

· Permissions for access to the file system should be locked down for each Web site.
Some applications might need certain features like the ability to use OLE DB or they might need enhanced .NET reflection permissions. This type of functionality is not permitted in Medium trust. If an application requires code-access security permissions that do not exactly match a predefined trust levels, create a custom trust level. For example, rather than using Full trust in order to support OLE DB, you can create a new trust level that enables whatever permissions are needed for the application.

Customizing Trust Level Policy

Predefined trust-level policies are implemented by using XML files. When a predefined trust level policy does not meet your security requirements, you can create a customized policy by modifying an existing predefined policy.

With this approach, you do the following:

· Copy one of the existing trust-level policy files to create a custom policy file.

· Add the required permissions to the custom policy file.

· Configure the machine-level Web.config to use the custom policy.

The following procedure describes an example of how to create a customized trust level policy that modifies the default permissions for accessing the OLE DB API.

To create the custom trust level configuration file and add a new permission:
1. Copy the Medium trust policy file, web_MediumTrust.config, to create a new policy file in the same directory (%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\).

Give the new file a name that indicates that it is a variation of Medium trust. For instance, it could be named web_MediumTrustOleDb.config.

2. Open the new trust configuration file and add the OleDbPermission security class definition to the <SecurityClass> section, as shown in the following example:

<SecurityClass Name="OleDbPermission" Description="System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

3. Add the unrestricted OleDbPermission to the "ASP.Net" named permission set, as shown in the following example:

<PermissionSet

 class="NamedPermissionSet"

 version="1"

 Name="ASP.Net">

 ...

 <IPermission class="OleDbPermission"

 version="1"

 Unrestricted="true"/>

 ...

</PermissionSet>

4. Open the default Web.config file in the %windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\ directory to add the custom trust level that references the custom trust configuration file you have created.

5. In the Web.config file, add a new <trustLevel> element to the <securityPolicy> section to define a new level named "Custom" and to associate it with the new custom policy file.

<location allowOverride="false">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

 <trustLevel name="Custom" policyFile="web_mediumtrustoledb.config"/>

 </securityPolicy>

 <trust level="Custom" originUrl="" />

 </system.web>

</location>

When you save the Web.config file, the new settings are in force for all Web applications on the current server.

Locking the Trust Level

If a Web server administrator wants to use code access security to ensure application isolation and to restrict access to system-level resources, he or she must be able to define security policy at the machine level and prevent individual applications from overriding it. Anyone responsible for running multiple Web applications on the same server should lock the trust level for all Web applications.

To lock trust levels, open the machine-level Web.config file in the %windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\ directory. Enclose the <trust> element in a <location> element, and set the allowOverride attribute to false, as shown in the following example:
<location allowOverride="false">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

 </securityPolicy>

 <trust level="Custom" originUrl="" />

 </system.web>

</location>

Administrators can also lock other sections so that they cannot be overwritten by Web.config files that appear lower in the hierarchy, using the <location> element and the allowOverride attribute.

Setting Multiple Trust Levels for Applications

It is recommended that hosters lock the trust level to prevent individual applications from assigning Full trust and gaining permissions that might not have been intended by the hoster. If a trust level is specified and no override is allowed, all applications on the server will run in that trust level and be unable to set their own trust, nor perform any operations that are not permitted by that trust level.

However, some applications on the server might need different permissions than the trust level that the hoster has specified. For example, a control panel or billing application might require different privileges.

To set an application-specific trust level, create a second <trust> element in the machine-level Web.config file. Enclose the new <trust> element in a <location> element, set the allowOverride attribute to false, and add a path attribute, as shown in the following example. The path attribute should contain the URL of the Web site, such as contoso.com or contoso.com/thisvirtualdirectory, to specify which application is assigned this custom trust level.

<location allowOverride="false" path="contoso.com">

 <system.web>

 <trust level="Medium" originUrl="" />

 </system.web>

</location>

It is important not to assign a different trust level to an application simply because a customer’s application will not run in a hoster’s chosen trust level. By enabling that application to run in a higher trust level, you might place other applications or your server at risk. An example would be a hosting site that runs in Medium trust, but that also provides one application the ability to run in Full trust. The application would no longer be restricted to Medium trust operations and would be able to access resources outside of its own directory, or to read from the registry.

LINQ and Code Access Security (ASP.NET 3.5)

The new LINQ (Language Integrated Query) feature in the .NET 3.5 Framework is used for querying data by using a natural syntax in programming languages. LINQ requires reflection to be enabled in order to work properly. If hosters want to offer this new feature, they must enable LINQ by running in Medium or High trust levels.

The following sections provide information about how to use LINQ under Medium trust and under High trust.

Using LINQ with Medium Trust

To use LINQ in a Web application that is running in Medium trust, you must include two elements in the policy file for Medium trust (by default, this is the web_MediumTrust.config file).

In the SecurityClasses element, add a SecurityClass element and set attributes as shown in the following example:

<SecurityClass

 Name="ReflectionPermission"

 Description="System.Security.Permissions.ReflectionPermission, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

In the PermissionSet element that has the Name attribute set to "ASP.Net", add an IPermission element that has the following attributes:

<IPermission

 class="ReflectionPermission"

 version="1"

 Flags="RestrictedMemberAccess"

/>

Note The elements might exist if the trust levels have already been edited.

Using LINQ with High Trust

To use LINQ in a Web application that is running in High trust, you must include one element in the policy file that is defined for High trust (by default, this is the web_HighTrust.config file). This file already includes an IPermission element within a PermissionsSet element that references the ReflectionPermission class. You must modify this element when you use LINQ.

Within the PermissionSet element that has the Name attribute set to "ASP.Net", find the Flags element for ReflectionPermission and set it to match the following example:

<IPermission

 class="ReflectionPermission"

 version="1"

 Flags="ReflectionEmit, RestrictedMemberAccess"

/>

For more information about how to use LINQ in ASP.NET applications, see Using LINQ with ASP.NET on the MSDN Web site.
Additional Resources

For more information trust levels and code access security permissions provided by each trust level in ASP.NET, see the following topics on the MSDN Web site:

· For information about how to select an appropriate trust level for your application, and how to create a custom ASP.NET code access security policy file to define a custom trust level, see How To: Use Code Access Security in ASP.NET 2.0.
· For information about how to use code access security and Medium trust to provide application isolation when running multiple applications on the same server, see How To: Use Medium Trust in ASP.NET 2.0.

Providers in ASP.NET

Many features of ASP.NET version 2.0 and later rely on providers to store and retrieve data from a data source. For example, ASP.NET membership relies on a membership provider to store and retrieve user authentication data, and the ASP.NET profile manager uses a profile provider to store and retrieve user settings and personal data. Other features that use providers include site navigation, role management, Web Parts, and personalization.

For each feature, a provider is included that uses an .mdf file (a SQL Server Express Edition or SQL Server database). All built-in providers can store and retrieve data by using the same database.

Note Some features include a provider for other data sources, such as the Windows token role provider or the Authorization Manager Role provider. In addition, a custom provider can be implemented that works with different data sources and with custom data schemas.

The machine-level Web.config file for the server computer includes configuration elements that specify SQL Server providers for each of the ASP.NET features that rely on a provider. By default, these providers are configured to connect to the local instance of SQL Server Express Edition. For example, in the <connectionStrings> element of the machine.config file, the connectionString attribute points to an instance of SQL Server Express Edition and to the App_Data folder of ASP.NET Web sites.

SQL Server Express Edition is not installed on the server by default, and should not be used in shared-hosting scenarios. Change the configuration information so that it does not point to an instance of SQL Server Express Edition. (A typical strategy is to provide each hosted site with its own SQL Server database and connection string that the site owner can use to create any required ASP.NET application services data tables.)
For more information about how to configure SQL Server for hosted environments, see SQL Server 2005 Deployment Guidance for Web Hosting Environments on the Microsoft TechNet Web site.
Configuring a Database for Use with ASP.NET Providers

To configure a database for use with providers, you can use the Aspnet_regsql.exe tool. This tool is included by default in the following directory on your Web server:
%windir%\Microsoft.NET\Framework\v2.0.50727\

In order to run Aspnet_regsql.exe, you must use an account that has db_datareader, db_datawriter, db_ddladmin, and db_securityadmin privileges for the specific database you are configuring. You can also use Aspnet_regsql.exe to generate a SQL script and then have the script run as part of an existing SQL provisioning process.

One method of running Aspnet_regsql.exe is to launch it as a UI-based wizard that walks you through adding or removing a schema for a database. To launch the wizard, run Aspnet_regsql.exe without any command line arguments, as shown in the following example:

Aspnet_regsql.exe

You can also run the Aspnet_regsql.exe tool as a command-line utility. For example, the following command installs the database schema for membership and role management for an existing database on an instance of SQL Server.
Aspnet_regsql.exe -A all -d MyDatabase

To automate the process of extending the schema in the database, you can run Aspnet_regsql.exe with certain switches that will generate the appropriate SQL script. You can then use the generated script in your existing SQL provisioning scripts. To generate a SQL script that will add all the providers to a database, use the following command:
Aspnet_regsql.exe -A all -sqlexportonly RunProviders.sql

This command will generate a file named RunProviders.sql that can be used for programmatically adding the schema to the database.

You also need to add the database user to the following roles:

· Aspnet_Membership_FullAccess

· Aspnet_Personalization_FullAccess

· Aspnet_Profile_FullAccess

· Aspnet_Roles_FullAccess

· Aspnet_WebEvent_FullAccess

Adding the user to these roles allows the application that is connecting as that user to use the provider features. Aspnet_regsql.exe does not do this for you automatically, because you need to choose which users are given access to the roles.

You can add the user to the roles by running the command shown in the following example. You run the command once for each of the roles listed previously.

EXEC sp_addrolemember 'aspnet_Membership_FullAccess', 'SqlDbUser'

In this example, SqlDbUser is the database user that will be added to the roles, and aspnet_Membership_FullAccess is the role to which the user will be added.

You run this command for each database whose schema has been extended (as shown in the earlier example). The database user account itself cannot run this command unless the user is dbo. However, you can add this to a provisioning script that runs as dbo or as a higher-privileged account such as a SQL Server administrator.

If you do not run this step, the database user that is configured in the connection string will be unable to execute stored procedures that are necessary for certain applications, such as the Personal Web Site Starter Kit.

Frequently Asked Questions

When are Member Roles used?

The Member Roles schema supports applications such as the Personal Web Site Starter Kit that shipped with Visual Web Developer 2005 Express Edition. Other ASP.NET Starter Kits and community-developed applications might also require the Member Roles schema or other provider schemas.

Who provisions the schema: the hoster or the customer?

Typically, the hoster provides a connection string that the customer can use to access a database. When a Web site is deployed, the customer should use the connection string to create (or re-create) the schema.
Can a hoster allow customers to provision the schema?

In order to provision the schema, the database user needs db_datareader, db_datawriter, db_ddladmin, and db_securityadmin permissions. It is up to the hoster to determine whether to provide this level of access to customers.

Why are db_ddladmin and db_securityadmin needed to provision the schema?

The database objects (views, stored procedures, roles, and tables) will be automatically created with the owner set to dbo. Hosters are not allowed to grant dbo access to the database user account, because of certain privileges that it allows. In order to provision dbo-owned objects as a user who is not dbo, db_ddladmin and db_securityadmin are needed (in addition to normal privileges of db_datareader and db_datawriter).

Running ASP.NET 1.1 and ASP.NET 2.0 and Later Applications Together

ASP.NET versions 2.0 through 3.5 are backward compatible with version 1.1. They allow you to run an ASP.NET 1.1 application on a server that has only ASP.NET 2.0 or later installed. Alternatively, you can run ASP.NET 1.1 and ASP.NET 2.0 and later applications side-by-side. This section discusses both methods.

Backward Compatibility

In the context of the .NET Framework, backward compatibility means that an application created using an early version of the .NET Framework will run on a later version. The .NET Framework provides a high degree of backward compatibility.

Most applications created using version 1.0 will run on version 1.1, and applications using version 1.1 will run on versions 2.0 through 3.5. However, applications might need to be modified so that they will run as expected. For example, existing applications should be evaluated to determine whether they are running at optimum performance levels. If performance is not optimum, the application can be modified or migrated to the latest version of ASP.NET.

Running ASP.NET Side-by-Side

Side-by-side execution is the ability to install multiple versions of the .NET Framework so that an application can choose which version to use. Subsequent installations of other versions of the runtime, of an application, or of a component will not affect applications that are already installed.

To run ASP.NET 1.1 and later versions of ASP.NET side-by-side, you can simply install the later version of ASP.NET on a server that has ASP.NET 1.1 installed (or vice versa). When you install the second version of the .NET Framework, it does not automatically become the default framework version, because another version of the framework is already installed. Instead, you must explicitly configure the later version of ASP.NET to be the default framework. This can be done either for all applications on the server or for individual applications.

This section provides instructions for how to set the framework for the server and for individual applications. There are different procedures for running under IIS 6.0 and under IIS 7.0.

Internet Information Services 6.0 (IIS 6.0)
The information in this section applies to hosted sites running on Windows Server 2003 where the .NET Framework 2.0 or later has been installed. In this scenario, individual Web sites can run on either the .NET Framework version 1.1 (which is installed by default) or on version 2.0. For information on version numbers, see ASP.NET Versions earlier in this document.
To set the default framework for all ASP.NET applications:
6. run the Aspnet_regiis.exe tool using the syntax shown in the following example:

Aspnet_regiis.exe -r

Note The Aspnet_regiis.exe tool is located in a directory that corresponds to the version of ASP.NET that you want to use. For example, for versions 2.0 and higher of ASP.NET, the Aspnet_regiis.exe tool is located in %windir%\Microsoft.NET\Framework\v2.0.50727\ directory. For ASP.NET 1.1, the tool is located in the %windir%\Microsoft.NET\Framework\v1.1.4322\ directory.
To set the default framework for a single ASP.NET application:
7. In the Windows Start menu, click Start, and then click Run.
8. In the Open text box, type cmd, and then click OK.

9. Change to the directory for the version of ASP.NET that you want to use:

%windir%\Microsoft.NET\Framework\v2.0.50727\

or

%windir%\Microsoft.NET\Framework\v1.1.4322\

10. Run the Aspnet_regiis.exe command with the -s or -sn switch, and specify the path of the application that you want to configure.

The following example shows a sample command that updates the script maps for an application named SampleApp1.

Aspnet_regiis.exe -s W3SVC/1/ROOT/SampleApp1

Alternatively, you can switch sites to the newer version of ASP.NET by using the Internet Information Services (IIS) tab in the Microsoft Management Console (MMC) snap-in. As of ASP.NET version 2.0, the IIS properties dialog box includes an ASP.NET tab, where you can select a specific version. To access this tab, in the MMC snap-in, right-click a Web site and then select Properties. To set the ASP.NET version number for new Web sites and for Web sites that do not already have an explicit version set, right-click Web Sites and then select Properties.
Web sites that are running different versions of the .NET Framework cannot run in the same process. For example, an application that uses ASP.NET 2.0 must run in a separate application pool (separate process) from an application that uses ASP.NET 1.1.

When two or more applications are mapped to different versions of ASP.NET, but share the same application pool, you will see the following error message in the Application event log:

It is not possible to run different versions of ASP.NET in the same IIS process. Please use the IIS Administration Tool to reconfigure your server to run the application in a separate process.

To fix this error, make sure that the two applications do not run in the same application pool. Create a new application pool for each version of the .NET Framework that you want to use, and then assign individual Web sites to the application pool for that version. Follow these steps:
11. In the Windows Start menu, click All Programs, click Administrative Tools, and then click Internet Information Services (IIS) Manager.

12. Open the node for the server.
13. Right-click the Application Pools node and then click New.
The Add New Application Pool dialog box is displayed.
14. Give the new application pool a name (for example, "DefaultAppPool (2.0)"), and then click OK.
15. Open the Web Sites node.
16. For each Web site that will use a different version of the .NET Framework 2.0, do the following:

a) Right-click the Web site and then click Properties.

b) In the Home Directory tab, set the application pool to the application pool for a specific version of the Framework.
c) In the ASP.NET tab, select the version of ASP.NET that corresponds to the application pool that you selected.
Internet Information Services 7.0 (IIS 7.0)
IIS 7.0 supports the ability to run ASP.NET applications using both .ASP.NET 1.1 and ASP.NET 2.0 or later. Because only one version of the .NET Framework can be loaded into a single worker process, The Server Administrator must be careful to make sure that applications that run under different versions of ASP.NET are never configured to run in the same application pool. If this situation occurs, the first request loads the .NET Framework for the corresponding aspnet_isapi.dll, and subsequent requests that specify a different DLL in the same application pool fail.

IIS 7.0 recognizes that the application pool is the unit of ASP.NET versioning. As such, the version of the runtime that is loaded in that application pool is explicitly set in the application pool configuration. By default, IIS 7.0 pre-loads the runtime specified by this setting when it loads the worker process (unless the version is configured to be empty).

For more information about how to run ASP.NET 1.1 with IIS 7.0, see How to install ASP.NET 1.1 with IIS7 on Vista and Windows 2008 on the IIS.net Web site. The article contains step-by-step instructions that describe how to install ASP.NET 1.1, how to add a site to an application pool dedicated to ASP.NET 1.1, and how to create a new application pool that uses the .NET Framework version 1.1 by default.
Additional Resources

The following list contains links to pages where you can download different versions of the .NET Framework.
· .NET Framework version 1.1.

· .NET Framework version 2.0.

· .NET Framework version 3.5.
SMTP Configuration

The <mailSettings> element in the configuration file configures e-mail sending options. This element can be placed inside an application-level Web.config file or into the machine-level Web.config file if you want to provide default SMTP settings for the server.

By providing a default in the root-level Web.config, you are allowing all applications on the server to take advantage of the e-mail settings. If you provide e-mail support only to certain customers, do not set the <mailSettings> element in the machine-level Web.config file.

E-mail delivery methods include:

· Using a Simple Mail Transfer Protocol (SMTP) server that you provide.

· Moving e-mail messages into the pickup directory for the SMTP server built into IIS, which then delivers the message.

· Moving e-mail messages to a directory specified by the pickupDirectoryLocation attribute of the <specifiedPickupDirectory> element for delivery by another application.

Certain controls have dependencies on the e-mail settings. For example, the PasswordRecovery control relies on the e-mail settings, and requires access to a working SMTP server. Other controls use e-mail settings optionally, such as the CreateUserWizard and ChangePassword controls. Third-party controls might also need to send e-mail messages.

SMTP Configuration Example

The following example specifies SMTP parameters to send e-mail by using a remote SMTP server. The example shows how to configure explicit user credentials.
Note Sections in the Web.config file that contain sensitive information such as user names or passwords should be encrypted. For more information, see Encrypting Configuration Information Using Protected Configuration on the MSDN Web site.
<system.net>

 <mailSettings>

 <smtp deliveryMethod="Network">

 <network

 defaultCredentials="false

 from="name@contoso.com"

 host="smtphost"

 port="25"

 password="password"

 userName="user"/>

 </smtp>

 </mailSettings>

</system.net>

ASP.NET Configuration API

There are many ways to create and edit ASP.NET configuration files (which include the machine-level Web.config file and individual application Web.config files). You can use a text editor, the ASP.NET management console, or the ASP.NET configuration API.

The IIS management console provides a convenient way to manage ASP.NET configuration settings at all levels on a local or remote Web server. In Windows Server 2008, you use the Internet Information Services (IIS) Manager. In Windows Server 2003, you use the IIS MMC snap-in. As of ASP.NET version 2.0, the management console includes settings for ASP.NET. The console uses the ASP.NET configuration API, but it simplifies the process of editing configuration settings by providing a graphical user interface (GUI).

The ASP.NET configuration API provides the following capabilities:

· Provides an integrated view of data from all levels of the configuration hierarchy.

· Supports deployment tasks, including creating configurations and configuring multiple computers with one script.

· Provides a single programming interface for developers who build ASP.NET applications, console applications and scripts, Web-based management tools, and MMC snap-ins.

· Prevents developers and administrators from making invalid configuration settings.

· Enables developers to extend the configuration schema. Developers can define new configuration parameters and write configuration section handlers to process them.

· Supports batch execution across multiple servers.
The ASP.NET configuration system provides server administrators with a managed interface for programmatically configuring ASP.NET applications without directly editing the XML configuration files. The ASP.NET configuration system simplifies many tasks, including the following:

· Writing a script that configures the same ASP.NET application on any or all of the servers in a Web farm.

· Locking some of the settings that are used for each instance of the application.

· Creating an automated audit process that records the configuration settings of deployed applications to ensure that the installation on each computer is configured the same way.

· Editing a change in configuration once, and then applying the change to all the instances of the application, wherever they are installed.

Additional Resources

Additional information about how to create and edit ASP.NET configuration files can be found in the following articles on the MSDN Web site:

· For more information about how to write tools using the configuration API, see Using the Configuration Classes and How to: Access ASP.NET Configuration Settings Programmatically.

· For more information about how to configure ASP.NET Web applications and control how the applications behave, see system.web Element (ASP.NET Settings Schema).

· For information about features in the configuration system that are new as of ASP.NET 2.0, see What’s New in ASP.NET Configuration.

Enabling WebPermission in Medium Trust

The goal of code access security (CAS) is to reduce the attack surface of .NET Framework-based applications by enabling applications to run with the minimum permissions that are required in order to function. For more general information about using CAS with ASP.NET 2.0, see Chapter 19 — Securing Your ASP.NET Application and Web Services on the Microsoft Patterns and Practices Web site.

We recommend that hosters run in Medium trust. Most applications will function correctly, and Medium trust provides a good level of protection for the server and for other applications on the server. However, functionality that is sometimes used by Web developers can require additional permissions that are not enabled by default in Medium trust. Increasingly, Web applications need to make cross-application Web service calls. For example, an e-commerce Web site might need to make a Web service call in order to get credit-card authorization.
To enable this scenario, the settings for the WebPermission class must be expanded to allow calls to other sites. By default, WebPermission is locked in Medium trust to allow calls only to $OriginHost$
Note that an application with expanded WebPermission access could also make requests that are dangerous, such as the following:

· An application could make a call to administrative Web services on the internal network. If your administrative Web services are not locked down (especially if they run in Full trust), you must make sure that other applications on the network cannot reach them.
· An application could launch a denial of service (DOS) attack against other Web servers on your network or on the Internet.
· If the application is making requests through a proxy server (which is recommended), the requests might not be tracked, depending on how you track bandwidth.
· An application could bypass restrictions defined in the customErrors configuration section and might be able to obtain detailed error information for other applications on the server, including a stack trace and the physical path.
Some of the ways in which you can mitigate these risks include the following:

· Set a default proxy server in the Web server’s root-level Web.config file, and do not allow applications to override this setting. This prevents applications from making direct Web service calls to other computers on the network and thereby being able to bypass the proxy server. It also prevents requests to other applications on the server from appearing as if they originate from localhost, and therefore prevents the requests from obtaining detailed error information.

· Make sure that firewall settings prevent outbound HTTP and HTTPS traffic from the Web server. This means that an application cannot make a direct call to a server or site on the Internet; all outbound calls must go through the proxy server.
· Add or configure the proxy server to allow requests from the Web servers to Internet resources. Make sure that you log requests from the Web servers so that if any abuse is detected, you can determine which application is causing it.
· Allow the Web server to make proxy requests only to the Internet, not to the internal network.
· Throttle the number of requests that go through the proxy server. If you do not throttle the number of requests, a DOS attack could be launched from your Web server by a hosted application.
Because there is a risk associated with enabling WebPermission, it is not enabled by default. It should be enabled by a hoster only after an assessment has been made to determine how the risks will affect the hoster and what mitigations are sufficient for the hoster's environment.

How to Enable defaultProxy
To configure a default proxy server, follow these steps.
17. Open the machine-level Web.config file. By default, the file is location in the following folder:

\%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\

18. In the defaultProxy element in <system.net>, set the usesystemdefault attribute to false, and then add the <proxyaddress> and <bypassonlocal> child elements as shown in the following example (substitute the correct URL for the proxy server address):
<system.net>

 <defaultProxy>

 <proxy usesystemdefault="false"

 proxyaddress=http://proxyserver
 bypassonlocal="false" />

 </defaultProxy>

</system.net>

19. Add a <location> element and set its allowOverride attribute to false. This prevents an application from changing defaultProxy settings at the application level. The <location> element looks like the following example (substitute the correct URL for the proxy server address):
<location allowOverride="true">

 <system.net>

 <defaultProxy>

 <proxy usesystemdefault="false"

 proxyaddress=http://proxyserver
 bypassonlocal="false" />

 </defaultProxy>

 </system.net>

</location>

For more information about the defaultProxy element, see defaultProxy Element (Network Settings) on the MSDN Web site.
How to Enable WebPermission in a Custom Trust Level

To enable WebPermission in a custom trust level, use the following procedure. This procedure assumes that you have already created a custom trust level based on Medium trust, as described elsewhere in this guide.
20. Open the web_CustomTrust.config file. (Use the name of the custom trust file that you created.) By default, the file is in the following folder:
%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\
21. Edit the WebPermission settings to remove the ConnectAccess element and to set the Unrestricted attribute to true, as shown in the following example:
<IPermission class="WebPermission"

 version="1"

 Unrestricted="true" />

 ...

Setting the Unrestricted attribute to true enables all Web requests to any destination. However, by also configuring the defaultProxy element and adding other restrictions to your network infrastructure, you are adding layers of defense to help prevent misuse of the WebPermission settings.

For more information about WebPermission, see WebPermission Class on the MSDN Web site.

Common Location for Microsoft AJAX Library

The Microsoft AJAX Library 3.5 can be used by ASP.NET applications and by applications that use other Web technologies, such as HTML pages, PHP, and Rails. In order to support the use of this library, hosters should make the library's JavaScript files available in a common location on the hosted network. For information about downloading the Microsoft AJAX Library 3.5, see the downloads page on the ASP.NET AJAX Web site.

Hosting Scenarios and Recommendations

Most hosting scenarios involve a shared Web server that hosts hundreds or thousands of Web sites. These Web sites need rich functionality while also being isolated from each other, because these sites do not run as trusted code. This section discusses certain recommendations for server administrators who run such environments.

Trust Levels for a Shared Hosting Environment

As discussed in Trust Levels and ASP.NET 2.0 Features, hosters should never run in Full trust, because Full trust places no restrictions on the operations an application can perform. Instead, a partial trust level (that is, a trust level other than Full trust) should be used. The recommended trust level is Medium, which allows many common operations and restricts many of the potentially dangerous operations. If more operations need to be permitted than Medium trust allows, you should create a custom trust level.

Hosters can create customized trust levels based on their needs. With a custom trust policy, hosters could base the permission set on Medium trust; for example, this can permit users to read from Microsoft Access databases. For more information about how to customize default trust level policies, see Customizing Trust Level Policy.

It is also important that hosters always lock down the trust level so that it cannot be changed by an application lower in the hierarchy. If unlocked, an application can change its own trust level to Full trust and perform operations on the server such as reading from the registry or accessing files outside its own path.

Hosting and Isolating Multiple Applications

When hosting multiple Web sites on a single server, server administrators should consider how to isolate the applications from each other. Medium trust provides some sandboxing and isolation. Each application runs in its own application domain.

In addition, by default Medium trust allows an application to write only within its own application directory. Even if NTFS file system permissions are set so that an application has permissions to a directory outside its root path, code access security prevents it from accessing that directory.

Isolating by Application Pool

Running each application in its own application pool and configuring it with a unique process identity offers an additional level of isolation. Each application then has its own process, and if the application stops responding, it does not affect other sites on the server. By having a process with its own identity, physical content can be secured to only allow access for that identity. This is a robust and secure method of isolation, but one that can consume many resources by having a larger number of processes.

If you do not have a large number of sites active at a given time, if you aggressively recycle based on memory limits, and if you shut down idle processes, you might find this to be a good approach for your environment.

For more information about isolating multiple applications on a server, see Chapter 20 – Hosting Multiple Web Applications on the MSDN Web site.
Enabling Additional Worker Processes with UseSharedWPDesktop

If you are setting up application pools with unique identities, there is an upper limit of about 60 application pools on the x86-processor architecture. (The exact limit depends on the applications that are running and on memory resources on your server.) Each logon session claims a share of non-paged memory. As a result, up to about 60 processes can run concurrently as distinct accounts. This limit may be different on the x64-bit processor architecture, because it can address more memory space.

IIS supports running these processes in a single shared workstation and desktop, at a cost of sharing a single encapsulation of a user session among all parties. To scale beyond 60 application pools and to share a single desktop, change the Windows UseSharedWPDesktop registry setting to a DWORD value of 1. After changing this registry key, you will be able to scale to hundreds of application pools and hundreds of concurrently running worker processes.

For more information about working with registry keys in IIS 6.0, see WWW Service Registry Entries (IIS 6.0) on the Microsoft TechNet Web site. For more information about the 60-pool limit in IIS 6.0, see the blog entry titled "Security considerations of UseSharedWPDesktop on IIS6 " by David Wang.

Using ASP.NET in a Web Farm

In a Web farm, server administrators must run multiple front-end Web servers with a back-end server for content storage. Instead of using a physical drive path for the Web site, a Universal Naming Convention (UNC) share is defined for the Web site.
To serve content from a UNC share:
22. Configure the home directory for the Web site to be a UNC share. Leave the Connect As option set so that the authenticated user (the anonymous user) will be used.

23. Grant Read permissions for the anonymous user and the process identity (the user account configured for the application pool in which the site runs) on the physical directory.

24. Grant the anonymous user Full control to the %windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\ directory or to the temporary directory for that application that is specified in the tempDirectory attribute of the compilation configuration element.

25. Grant the anonymous user List files and Delete permission to the %windir%\Temp\ directory.

26. Run the Code Access Security Policy editor (Caspol.exe) to add policy that gives ASP.NET the appropriate access level to the UNC share.

This step is necessary because code-access security policy must be set for both the application and for the UNC where the application resides. This can mean that code that runs from a UNC share might end up with a lower permission level than it requires. If you are hosting applications on a UNC share, it is often easiest to grant Full trust to the UNC share where application content is being hosted, and then use a more locked-down trust level that is specified in the machine-level Web.config file.
The following example shows how to use the Caspol.exe tool to give full code access security trust to the \\myshare\mydir UNC.
caspol -m -ag 1. -url "file://\\myshare\mydir*" FullTrust

Note The Caspool.exe tool is located in the %windir%\Microsoft.NET\Framework\v2.0.50727\ directory.
27. If the process identity is a domain or custom user, run the following command to add the appropriate permissions. If your process identity is Network Service, this step is not necessary.

Aspnet_regiis.exe -ga ActiveDirectoryDomain\ProcessIdentity
Note The Aspnet_regiis.exe tool is located in the %windir%\Microsoft.NET\Framework\v2.0.50727\ directory.

For more information about how to use a custom process identity with ASP.NET, see How To: Create a Service Account for an ASP.NET 2.0 Application on the MSDN Web site.
Making Sure That Application State Will Be Maintained in a Web Farm

If an application is deployed in a Web farm, the configuration files on each server need to share the same value for the validationKey and decryptionKey attributes of the machineKey configuration setting, which are used for hashing and decryption, respectively. This is required because you cannot guarantee which server will handle successive requests. If this is not done, visitors to the site might see the error "The state information is invalid for this page and might be corrupted." By default, these settings are automatically generated. This means that they will be different on each server in the Web farm. For more information about how to work with application deployed in a Web farm, see the following articles:

· Fix: "The View State Is Invalid for This Page and Might Be Corrupted" Error Message in ASP.NET on the Microsoft Help and Support Web site.

· How To: Configure MachineKey in ASP.NET 2.0 on the MSDN Web site.

New Features That Affect Hosters

The following sections describe features that have changed since .NET Framework version 1.1 and that affect hosters.

.NET Framework 3.5 and Later

Using LINQ in Medium and High Trust (ASP.NET 3.5)

The LINQ feature in the .NET Framework 3.5 requires a permission named RestrictedMemberAccess. By default, this permission is not granted for earlier versions of ASP.NET. To enable LINQ to work in Medium or Partial trust, you need to modify the CAS policy file to grant this additional policy. For details about how to modify the trust policy, see LINQ and Code Access Security.
.NET Framework 2.0 and Later

Access Databases: Using OLE DB and ODBC Providers in Medium Trust

In ASP.NET 2.0 and later, applications can read or write Access databases in partial trust; they do not require Full trust. As noted earlier, the OLE DB managed data provider does not demand Full trust, although by default OleDbPermission is not granted to Medium trust applications. This means that you can access an OLE DB data source, such as an .mdb Access database file, in partial trust.

To enable necessary permissions for applications to read and write .mdb files in partial trust, you must create a custom trust policy file as described in Trust Levels and ASP.NET 2.0 Features.

Application Idle Timeout: Shutting Down Inactive Application Domains

ASP.NET supports a feature called Process Model Idle Timeout. This feature enables a worker process to be shut down after the application has been idle for a predefined amount of time. (That is, it has not received a request within that amount of time.) The default configuration is set to "Infinite", meaning that the application will be instantiated and kept alive as long as that process is running.

However, many Web sites might run in a single application pool, so that while one application might become idle, the entire pool is not as likely to do so. For this reason, a new feature was introduced in ASP.NET 2.0 called Application Idle Timeout.

The Application Idle Timeout feature provides hosters with a mechanism to shut down an application domain that has been idle for a specified amount of time. As discussed earlier, an application domain is where an application executes, and it is isolated from other applications within the same process. Each application has its own application domain.

The Application Idle Timeout feature enables ASP.NET to support a larger number of application domains per process by optimizing the use of resources. Only active application domains that are currently being used will be kept in memory.

This setting is most useful when you have multiple applications per application pool. When you configure this setting, keep in mind that setting it too low can result in many applications constantly starting up and then being quickly shut down. In that case, the process has to work harder and may consume more resources to keep up with this application recycling churn.

Generally, the idleTimeout value should not be configured for less than 30 minutes, and a better setting is probably an hour. Depending on the application load, hosters should test various time limits and find out what works best in their environment.

To enable the application idle timeout:
28. Open the machine-level Web.config.comments file. By default, this file is in the following directory:

\%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\

29. Find the <hostingEnvironment> element, which looks like the following example:
<!--

 <hostingEnvironment

 idleTimeout=["Infinite"|"number"]

 shutdownTimeout=["30"|"number"]

 shadowCopyBinAssemblies= ["true"|"false"]

 />

-->

<hostingEnvironment idleTimeout="Infinite"

 shutdownTimeout="30"

 shadowCopyBinAssemblies="true" />

The idleTimeout attribute is the amount of time, in minutes, before an inactive application is unloaded. The shutdownTimeout attribute sets the amount of time, in seconds, to gracefully shut down the application.

30. Copy the <hostingEnvironment> element into the <system.web> section of the root-level Web.config file in the same directory, and edit the settings appropriately.

These changes apply the defaults to all Web applications on the current server.

Performance Benefits in ASP.NET 2.0 and Later

In ASP.NET 1.1, the framework modules (system.web.dll, system.data.dll, system.xml.dll, and so on) must be just-in-time compiled ("jitted") in each application domain. In ASP.NET 2.0 and later, the framework modules have native images that are generated by the Ngen.exe tool. These images are loaded domain-neutral and are shared across multiple application domains. Additionally, the native images are loaded just like any other DLL—the memory can be shared by multiple processes.

Performance changes made in ASP.NET 2.0 can provide the following benefits:

· An increase in the number of applications (measured by application domains) that can be hosted.

· An increase in the number of worker processes per machine, often as much as 80 percent more.

The benefits may vary on hosted servers, where content is uploaded by many different users and might be inefficient or resource-intensive.

Configuring Garbage Collection to Improve Performance

On multiprocessor machines, performance can be increased by using the workstation garbage collector (GC). The .NET Framework common language runtime (CLR) has two GC modes, Server and Workstation. The former, known as ServerGC, is optimized for scalable throughput on multiprocessor machines. The latter, known as WorkStationGC, is optimized to reduce collection pause times for interactive applications.

The ServerGC creates one heap per processor for parallel collections to improve GC performance on multiprocessor machines. In contrast, the WorkStationGC creates only one heap, reducing working set at the expense of GC performance on multiprocessor machines. When multiple ASP.NET worker processes are hosted, the ServerGC can consume more memory than is ideal. For this scenario, if the WorkStationGC is used instead, the number of hostable worker processes can increase substantially with only a small decrease in throughput.

To enable the WorkStationGC:

31. Open the Aspnet.config file. By default, this file is in the following directory:

\%windir%\Microsoft.NET\Framework\v2.0.50727\

32. Add the following element to the Aspnet.config file in the <runtime> element:

<gcServer enabled="false" />

Note This change can be made in any version of ASP.NET later than version 1.1.

ASP.NET Performance on the x64 Platform

ASP.NET includes optimizations for running on the x64 platform. For example, on the x86 platform, the non-paged pool memory limit is 256 MB, whereas on the x64 platform the limit is 128 GB. The higher pool memory limit resolves several problems:

· It reduces the threat of denial-of-service attacks where non-paged pool is consumed by HTTP.sys.

· It reduces the possibility of ASP.NET out-of-memory exceptions.

· It reduces the possibility of errors that can occur if IIS runs out of work items and causes remote procedure call (RPC) failures when content is on a UNC path.

· It eliminates errors with ASP.NET file change notifications. ASP.NET file change notification relies on Server Message Block (SMB) protocol when the content is hosted on a UNC share. SMB uses non-paged pool memory, therefore as the number of UNC shares is increased, it will eventually run out of non-paged memory on the x86 platform.

For more information about the problem with ASP.NET file change notifications, see the following articles on the Microsoft Help and Support Web site:

· IIS Runs Out of Work Items and Causes RPC Failures When Connecting to a Remote UNC Path
· "The network BIOS command limit has been reached" error message in Microsoft Windows Server™ 2003, in Microsoft Windows XP, and in Microsoft Windows 2000 Server
WOW64 Compatibility: Running 32-bit Applications on a 64-bit Server

Another one of the performance benefits of the x64 platform is that it increases virtual address space, so more memory is available. Standard 32-bit systems can map at most 4 GB of memory. With 2 GB reserved for the operating system, only 2 GB remains for the application. You can increase the application virtual address space to 3 GB by setting a /3GB switch in the Windows boot.ini file.

The 64-bit platform offers 8 TB of memory for applications (the user virtual address space), with another 8 TB reserved for the operating system. This is a substantial increase in memory that can be used by Windows. However, some Web sites might have 32-bit applications that cannot be run on 64-bit. For such circumstances, IIS can be configured to start a 32-bit worker process, enabling Microsoft Windows on Windows 64 (WOW64) compatibility for 32-bit Web applications on a 64-bit server.

The user virtual address space for a WOW64 application is 4 GB; however, the .NET Framework CLR is able to use only 3 GB of this address space. Nonetheless, WOW64 applications also benefit from a non-paged pool size of 128 GB, just as native x64 applications do. Using the /3GB switch on an x86 machine reduces the size of non-paged pool, and therefore there are clear advantages to temporarily moving to WOW64 when your application has outgrown the x86 architecture but has not yet been compiled for native x64.
For more information about enabling WOW64 compatibility mode, see the article Microsoft Windows Server 2003 SP1 enables WOW64 compatibility for 32-bit Web applications in IIS 6.0 on the Microsoft Help and Support Web site.

Deploying ASP.NET Step-by-Step
This section provides an overview of the steps that are required in order to deploy ASP.NET. The setup process illustrated here uses the information in this document to show how to install ASP.NET onto a new server and to configure recommended settings.

To set up and deploy ASP.NET:

33. Download and install the .NET Framework on the Web server.

34. Add a custom trust policy based on Medium trust. To do so, copy the Medium trust policy file (web_MediumTrust.config) to a new policy file in the same directory (%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\). Give the new policy file a name that indicates that it is a variation of Medium trust. For instance, it could be named web_MediumTrustCustom.config.

35. Add the OleDbPermission security class definition to the <SecurityClass> section in the web_MediumTrustCustom.config file, as shown in the following example:

<SecurityClass Name="OleDbPermission" Description="System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

36. Add the unrestricted OleDbPermission to the "ASP.Net" named permission set, as shown in the following example:
<PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net">

 <IPermission class="OleDbPermission"

 version="1"

 Unrestricted="true"/>

 ...

</PermissionSet>

37. In the SecurityClasses element, add a SecurityClass element and set attributes as shown in the following example:

<SecurityClass

 Name="ReflectionPermission"

 Description="System.Security.Permissions.ReflectionPermission, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

38. In the PermissionSet element that has the Name attribute set to "ASP.Net", add an IPermission element that has the following attributes:

<IPermission

 class="ReflectionPermission"

 version="1"

 Flags="RestrictedMemberAccess"

/>

39. Modify the default Web.config file in the %windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\ directory to add the custom trust level that references the custom trust configuration file you have created.

40. Add a new <trustLevel> element to the <securityPolicy> section of the Web.config file to define a new level called "Custom" and to associate it with the custom policy file, as shown in the following example:

<location allowOverride="true">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal"

 policyFile="web_minimaltrust.config" />

 <trustLevel name="Custom" policyFile="webMediumTrustCustom.config"/>

 </securityPolicy>

 <trust level="Full" originUrl="" />

 </system.web>

</location>

41. Lock the trust level so that it cannot be changed by applications on the server. To do so, set the allowOverride attribute of the <location> element to false, as shown in the following example:

<location allowOverride="false">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

 </securityPolicy>

 <trust level="Medium" originUrl="" />

 </system.web>

</location>

For more information about this step, see Locking the Trust Level.

42. Configure ASP.NET for a Web site. To do this, right-click the Web site in the IIS MMC snap-in and select Properties. On the ASP.NET tab, select the version of ASP.NET that you want to use from the drop-down list.

For more information about this step, see Running ASP.NET Side-by-Side.

43. If the process identity is not Network Service, configure a custom process identity for the server application pool. To do so, run the Aspnet_regiis.exe tool with the –ga switch. If you do not perform this step, ASP.NET Web pages might run, but might experience permissions errors. This step configures the proper permissions for the custom accounts.
The following example shows the syntax for the Aspnet_regiis.exe command that you use for this step.
Aspnet_regiis.exe -ga ActiveDirectoryDomain\ProcessIdentity
ActiveDirectoryDomain is the domain that the application pool account is part of, if this is a domain account. ProcessIdentity is the user account that is configured as the identity of the application pool.

For more information about this step, see Using ASP.NET 2.0 in a Web Farm.

44. Add the provider schemas to the associated SQL database, using SQL Server commands like those shown in the following example:

EXEC sp_addrolemember 'aspnet_Membership_FullAccess', 'SqlDbUser'

EXEC sp_addrolemember 'aspnet_Personalization_FullAccess', 'SqlDbUser'

EXEC sp_addrolemember 'aspnet_Profile_FullAccess', 'SqlDbUser'

EXEC sp_addrolemember 'aspnet_Roles_FullAccess', 'SqlDbUser'

EXEC sp_addrolemember 'aspnet_WebEvent_FullAccess', 'SqlDbUser'

SqlDbUser is the SQL user name that will be used in the customer’s Web.config file to configure connection strings.

For more information about this step, see Configuring a Database for Use with ASP.NET Providers.

Additional Resources

For how-to guidance on a variety of scenarios in ASP.NET, see Patterns and Practices Security How Tos Index on the MSDN Web site.
