Fnctions And Stored Procedures

Functions
a) Can return only one value
b) Called from SQL Query
c) Compiled and executed during run time
Stored procedures
a) Can return more than one value
b) Can be called from SQL Query
c) Parsed and Compiled during design time itself

1. Functions are compiled and executed at run time.
Stored procedures are stored in parsed and compiled format in the database.

2. Functions cannot affect the state of the database which means we cannot perform insert,delete,update and create operations on the database.
Stored Procedures can affect the state of the database by using insert,delete,update and create operations.

3 Functions are basically used to compute values. We passes some parameters to functions as input and then it performs some operations on the parameter and return output.
Stored procedures are basically used to process the task.

4.Function can not change server environment and our operating system environment.
Stored procedures can change server environment and our operating system environment.

5.Functions can not be invoked from SQL Statements. Execute. SELECT
operating system can be invoked from SQL Statements. Execute. SELECT

6.Functions can run an executable file from SQL SELECT or an action query.
operating system use Execute or Exec to run

Response.Write and Resopnse.Output.Write

Resopnse.Output.Write..
1.Formatted output will be displayed.
2.It gives String.Format-style formatted output.
3.It writes the HTTP Output Stream.
4.As per specified options it formats the string and then write to web page.

Response.Write..
1.unformatted output will be displayed.
2.It never gives like that.
3.It writes the text stream
4.It just output a string to web page.

private void Page_Load (object sender, System.EventArgs e)

{

DateTime dtTwoDays = DateTime.Now; // Get the current date

dtTwoDays = dtTwoDays.AddDays(2); // Add 2 days to it

Response.Write(”Classical way of doing the same thing”);

string strMessage = dispMessage(dtTwoDays); // Call a method which would return the formatted string.

Response.Write(strMessage); // Print that formatted string

Response.Write(”.NET way of doing the same thing:”);

Response.Output.Write(”{0} from today is {1:d}”, “Two days”, dtTwoDays);

}

Private string dispMessage(DateTime dtMVP)

{

return String.Format(”{0} from today is {1:d}”, “Two days”, dtMVP);

}

The life cycle starts when a user requests a web page through his/her browser. The Web server than process the page through a sequence of steps before response is sent back to the user's browser. The steps are as:

1. Page Request

2. Start

3. Page Initialization

4. Load

5. Validation

6. PostBack Event Handling

7. Render

8. Unload

The below figure shows the Page Life Cycle of an ASP.NET and its controls

Managed code

Managed code is code written for .Net runtime or CLR (Common Language Runtime). The code that provides enough information to allow the common language runtime to perform the following tasks:
- Given an address inside the code locate the metadata describing the method.
- Walk the stack
- Handle exceptions
- Store and retrieve security information
Related to managed code is managed data. Managed data is data that is allocated but freed automatically by the garbage collection process. With garbage collection when an item goes out of scope the runtime cleans it up.

What Is Managed Code?

Managed Code is what Visual Basic .NET and C# compilers create. It compiles to Intermediate Language (IL), not to machine code that could run directly on your computer. The IL is kept in a file called an assembly, along with metadata that describes the classes, methods, and attributes (such as security requirements) of the code you've created. This assembly is the one-stop-shopping unit of deployment in the .NET world. You copy it to another server to deploy the assembly there—and often that copying is the only step required in the deployment.

Managed code runs in the Common Language Runtime. The runtime offers a wide variety of services to your running code. In the usual course of events, it first loads and verifies the assembly to make sure the IL is okay. Then, just in time, as methods are called, the runtime arranges for them to be compiled to machine code suitable for the machine the assembly is running on, and caches this machine code to be used the next time the method is called. (This is called Just In Time, or JIT compiling, or often just Jitting.)

As the assembly runs, the runtime continues to provide services such as security, memory management, threading, and the like. The application is managed by the runtime.

Visual Basic .NET and C# can produce only managed code. If you're working with those applications, you are making managed code. Visual C++ .NET can produce managed code if you like: When you create a project, select one of the application types whose name starts with .Managed., such as .Managed C++ application..

What Is Unmanaged Code?

Unmanaged code is what you use to make before Visual Studio .NET 2002 was released. Visual Basic 6, Visual C++ 6, heck, even that 15-year old C compiler you may still have kicking around on your hard drive all produced unmanaged code. It compiled directly to machine code that ran on the machine where you compiled it—and on other machines as long as they had the same chip, or nearly the same. It didn't get services such as security or memory management from an invisible runtime; it got them from the operating system. And importantly, it got them from the operating system explicitly, by asking for them, usually by calling an API provided in the Windows SDK. More recent unmanaged applications got operating system services through COM calls.

Unlike the other Microsoft languages in Visual Studio, Visual C++ can create unmanaged applications. When you create a project and select an application type whose name starts with MFC, ATL, or Win32, you're creating an unmanaged application.

This can lead to some confusion: When you create a .Managed C++ application., the build product is an assembly of IL with an .exe extension. When you create an MFC application, the build product is a Windows executable file of native code, also with an .exe extension. The internal layout of the two files is utterly different. You can use the Intermediate Language Disassembler, ildasm, to look inside an assembly and see the metadata and IL. Try pointing ildasm at an unmanaged exe and you'll be told it has no valid CLR (Common Language Runtime) header and can't be disassembled—Same extension, completely different files.

What about Native Code?

The phrase native code is used in two contexts. Many people use it as a synonym for unmanaged code: code built with an older tool, or deliberately chosen in Visual C++, that does not run in the runtime, but instead runs natively on the machine. This might be a complete application, or it might be a COM component or DLL that is being called from managed code using COM Interop or PInvoke, two powerful tools that make sure you can use your old code when you move to the new world. I prefer to say .unmanaged code. for this meaning, because it emphasizes that the code does not get the services of the runtime. For example, Code Access Security in managed code prevents code loaded from another server from performing certain destructive actions. If your application calls out to unmanaged code loaded from another server, you won't get that protection.

The other use of the phrase native code is to describe the output of the JIT compiler, the machine code that actually runs in the runtime. It's managed, but it's not IL, it's machine code. As a result, don't just assume that native = unmanaged.

Does Managed Code Mean Managed Data?

Again with Visual Basic and C#, life is simple because you get no choice. When you declare a class in those languages, instances of it are created on the managed heap, and the garbage collector takes care of lifetime issues. But in Visual C++, you get a choice. Even when you're creating a managed application, you decide class by class whether it's a managed type or an unmanaged type. This is an unmanaged type:

What goes on the Stack and Heap?

We have four main types of things we'll be putting in the Stack and Heap as our code is executing: Value Types, Reference Types, Pointers, and Instructions.

Value Types:

In C#, all the "things" declared with the following list of type declarations are Value types (because they are from System.ValueType):

· bool

· byte

· char

· decimal

· double

· enum

· float

· int

· long

· sbyte

· short

· struct

· uint

· ulong

· ushort

Reference Types:

All the "things" declared with the types in this list are Reference types (and inherit from System.Object... except, of course, for object which is the System.Object object):

· class

· interface

· delegate

· object

· string

What is managed and unmanaged code?

Net Frame Work

Difference between overloading and overriding

WPF, WCF

LINQ, Generics

Validator control

Use of DIV Tag

Why use User control

SqlDataadapter

difference between view state and hidden field

Basic Oops concepts

Substring and count

Master page

Web services

Authentication

Query string

Delegates

Connection String

Indexes in sql

Benefits of Enterprise Library

The design of application blocks encapsulates the Microsoft recommended and proven practices for .NET application development. These good practices are demonstrated in the overall design of the Enterprise Library, as well in the context-specific guidelines in the design of individual application blocks and QuickStarts. Software developers can add application blocks to .NET applications quickly and easily. For example, the Data Access Application Block provides access to the most frequently used features of ADO.NET, exposing them through easily used classes. In some cases, application blocks also add related functionality not directly supported by the underlying class libraries.

Goals for Enterprise Library

Enterprise Library is a collection of application blocks intended for use by developers who build complex, enterprise-level applications.

Enterprise Library is used when building applications that are typically to be deployed widely and to interoperate with other applications and systems. In addition, they generally have strict security, reliability, and performance requirements.

The goals of Enterprise Library are the following:

· Consistency. All Enterprise Library application blocks feature consistent design patterns and implementation approaches.

· Extensibility. All application blocks include defined extensibility points that allow developers to customize the behavior of the application blocks by adding their own code.

· Ease of use. Enterprise Library offers numerous usability improvements, including a graphical configuration tool, a simpler installation procedure, and clearer and more complete documentation and samples.

· Integration. Enterprise Library application blocks are designed to work well together or individually.

Stack

1. lives in RAM (random-access memory), but has direct support from the

processor via its stack pointer.

2. stack pointer is moved down to create new memory and moved up to release

that memory.

3. extremely fast and efficient way to allocate storage, second only to

registers.

4. stack is maily used for value types[Ex : value datatypes in C#].

5. This portion of the memory is not garbage collectible.

Heap

1.lives in general-purpose pool of memory (also in the RAM area) where all objects live.

2. the compiler doesn't need to know how much storage it needs to allocate

from the heap or how long that storage must stay on the heap.

3. Whenever we need to create an object, you simply write the code to create

it using new, and the storage is allocated on the heap

4. to put in simple terms heap memory is used for allocation of memory for

object types (where actual object is created)and only the heap part of the

memory is gargabe collectible (eligible for automatic garbage collection)

Systems development phases

Project planning, feasibility study: Establishes a high-level view of the intended project and determines its goals.

Systems analysis, requirements definition: Refines project goals into defined functions and operation of the intended application. Analyzes end-user information needs.

Systems design: Describes desired features and operations in detail, including screen layouts, business rules, process diagrams, pseudocode and other documentation.

Implementation: The real code is written here.

Integration and testing: Brings all the pieces together into a special testing environment, then checks for errors, bugs and interoperability.

Acceptance, installation, deployment: The final stage of initial development, where the software is put into production and runs actual business.

Maintenance: What happens during the rest of the software's life: changes, correction, additions, moves to a different computing platform and more. This, the least glamorous and perhaps most important step of all, goes on seemingly forever.

Difference between response.redirect and server.transfer in asp.net

If you want to pass state from the source page to the new page, you have to pass it either on the URL (such as a database key, or message string), or you can store it in the Session object (caveat: there may be more than one browser window, and they’ll all use the same session object).

e.g. Redirect to the new.aspx page, passing an ID on the query string. "true" stops processing the current page:

Response.Redirect("new.aspx?id=34", true);

Server.Transfer() : client is shown as it is on the requesting page only, but the all the content is of the requested page. Data can be persist accros the pages using Context.Item collection, which is one of the best way to transfer data from one page to another keeping the page state alive.

Response.Dedirect() :client know the physical loation (page name and query string as well). Context.Items loses the persisitance when nevigate to destination page. In earlier versions of IIS, if we wanted to send a user to a new Web page, the only option we had was Response.Redirect. While this method does accomplish our goal, it has several important drawbacks. The biggest problem is that this method causes each page to be treated as a separate transaction. Besides making it difficult to maintain your transactional integrity, Response.Redirect introduces some additional headaches. First, it prevents good encapsulation of code. Second, you lose access to all of the properties in the Request object. Sure, there are workarounds, but they’re difficult. Finally, Response.Redirect necessitates a round trip to the client, which, on high-volume sites, causes scalability problems.

Exception Handling In C#

Exception Class
Cause

SystemException
A failed run-time check;used as a base class for other.

AccessException
Failure to access a type member, such as a method or field.

ArgumentException
An argument to a method was invalid.

ArgumentNullException
A null argument was passed to a method that doesn't accept it.

ArgumentOutOfRangeException
Argument value is out of range.

ArithmeticException
Arithmetic over - or underflow has occurred.

ArrayTypeMismatchException
Attempt to store the wrong type of object in an array.

BadImageFormatException
Image is in the wrong format.

CoreException
Base class for exceptions thrown by the runtime.

DivideByZeroException
An attempt was made to divide by zero.

FormatException
The format of an argument is wrong.

IndexOutOfRangeException
An array index is out of bounds.

InvalidCastExpression
An attempt was made to cast to an invalid class.

InvalidOperationException
A method was called at an invalid time.

MissingMemberException
An invalid version of a DLL was accessed.

NotFiniteNumberException
A number is not valid.

NotSupportedException
Indicates sthat a method is not implemented by a class.

NullReferenceException
Attempt to use an unassigned reference.

OutOfMemoryException
Not enough memory to continue execution.

StackOverflowException
A stack has overflown.

Application and Session

Session object is used to maintain the session of each user. If one user enter in to the application then they get seesion id if he leaves from the application then the session id is deleted.If they again enter in to the application they get different session id.

But for application object the id is maintained for whole application.it doesn't differ for any user

Maximum Length Query String

IE

–
2083 Or 256 bytes

Opera
–
4050 characters

 Netscape Navigator version 4 ------ 30,000 characters

COOKIES

Expires - Gets or sets time when cookie expires. After that time cookie is deleted by the browser. The maximum life time for cookie is 365 days. You can increase expiration time every time when visitor visits your web site, but if visitor don't comes for more than 365 days, the cookie will be deleted.

Cookie size is limited to 4096 bytes

Difference Between Late Binding and Early Binding

 Early binding:: Properties and method can be identified by compile time.
Example: dim rs as recordset

Late binnding: Properties and method can be identified by Run time.
Example: dim obj as classname
set obj=new classname

Global.asax

 addition to writing UI code, developers can also add application level logic and event handling code into their Web applications. This code does not handle generating UI and is typically not invoked in response to individual page requests. Instead, it is responsible for handling higher-level application events such as Application_Start, Application_End, Session_Start, Session_End, and so on. Developers author this logic using a Global.asax file located at the root of a particular Web application's virtual directory tree. ASP.NET automatically parses and compiles this file into a dynamic .NET Framework class--which extends the HttpApplication base class--the first time any resource or URL within the application namespace is activated or requested.

The Global.asax file is parsed and dynamically compiled by ASP.NET into a .NET Framework class the first time any resource or URL within its application namespace is activated or requested. The Global.asax file is configured to automatically reject any direct URL request so that external users cannot download or view the code within.

Application_Start: Fired when the first instance of the HttpApplication class is created. It allows you to create objects that are accessible by all HttpApplication instances.

· Application_End: Fired when the last instance of an HttpApplication class is destroyed. It's fired only once during an application's lifetime.

Session_Start: Fired when a new user visits the application Web site.

· Session_End: Fired when a user's session times out, ends, or they leave the application Web site.

Page Life Cycle Events

· Page_Init
The server controls are loaded and initialized from the Web form's view state. This is the first step in a Web form's life cycle.

· Page_Load
The server controls are loaded in the page object. View state information is available at this point, so this is where you put code to change control settings or display text on the page.

· Page_PreRender
The application is about to render the page object.

· Page_Unload
The page is unloaded from memory.

· Page_Disposed
The page object is released from memory. This is the last event in the life of a page object.

· Page_Error
An unhandled exception occurs.

· Page_AbortTransaction
A transaction is aborted.

· Page_CommitTransaction
A transaction is accepted.

· Page_DataBinding
A server control on the page binds to a data source.

· Process Request Method finally renders HTML Page

Enterprise Library

The Microsoft Enterprise Library is a collection of reusable software components (application blocks) designed to assist software developers with common enterprise development cross-cutting concerns (such as logging, validation, data access, exception handling, and many others). Application blocks are a type of guidance; they are provided as source code, test cases, and documentation that can be used "as is," extended, or modified by developers to use on complex, enterprise-level line-of-business development projects.

Method Overriding

Method overriding means having a different implementation of the same method in the inherited class. These two methods would have the same signature, but different implementation. One of these would exist in the base class and another in the derived class. These cannot exist in the same class.

Overriding methods

Overriding method definitions

In a derived class, if you include a method definition that has the same name and exactly the same number and types of parameters as a method already defined in the base class, this new definition replaces the old definition of the method.

Explanation

A subclass inherits methods from a superclass. Sometimes, it is necessary for the subclass to modify the methods defined in the superclass. This is referred to as method overriding. The following exampledemonstrates method overriding.

An interface is like a class but all the methods and properties are abstract. An Interface cannot be instantiated like abstract class. All the methods and properties defined in Interface are by default public and abstract.

Interface generally refers to an abstraction that an entity provides of itself to the outside. Interface can help in separating the methods for external and internal communication without effecting in the way external entities interact with the type..

 Abstract Class

 An abstract class is a class with at least one method defined as abstract. This type of class cannot be instantiated. An abstract class can have one or more abstract methods and properties and other methods and properties like normal classes.

Partial Class

A class defined in two or more files is called a partial class. The keyword partial is used to define the class. When working on large projects, spreading a class over separate files allows multiple programmers to work on it simultaneously. During compile time all the partial class are compiled into one type only.

Sealed Class

 A sealed class is a class that cannot be inherited. Sealed classes are used to restrict the inheritance feature of object oriented programming.

The outermost component of a SOAP message is the SOAP envelope. The SOAP envelope, although

extremely important, is nothing more than a container for the two most important pieces of a SOAP

message, the SOAP header and the SOAP body.

http://www.wcftutorial.net/Introduction-to-WCF.aspx use

http://www.codeproject.com/KB/WCF/WCFPart1.aspx

http://www.codeproject.com/KB/WCF/WCF_Example.aspx

Catching

To Imporve the performance of Web Pages, we use Caching.
Caching is a used for persisting data in memory for
immediate acces to the program calls. It has three types :

1. Output Caching - to fetch page level information and data
2. Fragment Caching - to cache the information of a
structure level.
3. Application Caching - to fetch the information of an
application

WCF

Windows Communication Foundation (Code named Indigo) is a programming platform and runtime system for building, configuring and deploying network-distributed services. It is the latest service oriented technology; Interoperability is the fundamental characteristics of WCF. It is unified programming model provided in .Net Framework 3.0. WCF is a combined features of Web Service, Remoting, MSMQ and COM+. WCF provides a common platform for all .NET communication.

Below figures shows the different technology combined to form WCF.

Advantage

1. WCF is interoperable with other services when compared to .Net Remoting,where the client and service have to be .Net.

2. WCF services provide better reliability and security in compared to ASMX web services.

3. In WCF, there is no need to make much change in code for implementing the security model and changing the binding. Small changes in the configuration will make your requirements.

4. WCF has integrated logging mechanism, changing the configuration file settings will provide this functionality. In other technology developer has to write the code.

Web service is a part of WCF. WCF offers much more flexibility and portability to develop a service when comparing to web service. Still we are having more advantages over Web service, following table provides detailed difference between them.

Features
Web Service
WCF

Hosting
It can be hosted in IIS
It can be hosted in IIS, windows activation service, Self-hosting, Windows service

Programming
[WebService] attribute has to be added to the class
[ServiceContraact] attribute has to be added to the class

Model
[WebMethod] attribute represents the method exposed to client
[OperationContract] attribute represents the method exposed to client

Operation
One-way, Request- Response are the different operations supported in web service
One-Way, Request-Response, Duplex are different type of operations supported in WCF

XML
System.Xml.serialization name space is used for serialization
System.Runtime.Serialization namespace is used for serialization

Encoding
XML 1.0, MTOM(Message Transmission Optimization Mechanism), DIME, Custom
XML 1.0, MTOM, Binary, Custom

Transports
Can be accessed through HTTP, TCP, Custom
Can be accessed through HTTP, TCP, Named pipes, MSMQ,P2P, Custom

Protocols
Security
Security, Reliable messaging, Transactions

WCF

Messages

Message Structure

Messaging Programs

Messaging Patterns

Channels

Channel Stacks

Services

Endpoint

Addresses 33

Bindings 33

Contracts

Message

Windows Communication Foundation uses messages to pass data, or exchange

information, from one point to another. These messages are little more than a packet of data and must

conform to a specific format in order for the exchange of information

SOAP Envelope

The outermost component of a SOAP message is the SOAP envelope. The SOAP envelope, although

extremely important, is nothing more than a container for the two most important pieces of a SOAP

message, the SOAP header and the SOAP body.

SOAP Header

The SOAP header is a collection of zero or more header blocks. It is possible for a SOAP message to contain

no headers, so the SOAP header collection can contain zero or more SOAP headers. If a header is

included, it must be the first child element of the envelope element.

SOAP Body

The SOAP body is a collection of data items to be used at a specific target (SOAP receiver). Like the

SOAP header, a message can contain zero or more bodies.

A SOAP body, which is simply a child element of the envelope, contains all the necessary information

for communication with the SOAP receiver.

Messaging Programs

In WCF, different types of applications can send and receive messages. They are the following:

 Clients

 Services

 Intermediaries

Endpoint

Think of a service as a collection of one or more endpoints. A service must have at least one endpoint,

otherwise, what would there be to connect to? An endpoint is the component of the service that communicates

with the client and provides the service operations.

Addresses

You should have a pretty good idea by now that all endpoints are addressed by their address. However,

don’t make the mistake of thinking that all services are hosted within IIS or that they all have an

“http://...” address. Not correct.

Bindings

Bindings are what define how an endpoint communicates with the outside world. Each endpoint must

have a binding. The binding, which is simply a set of properties, defines things like the transport pattern,

the security pattern, and the message pattern. At the very least, a binding should specify the transport.

Contracts

Contracts define certain aspects of the service such as the format and structure of the message, and

equally important, the behavior of the service. Service contracts are well-formed XML documents, typically

found in the format of WSDL or XSD.

Windows Communication Foundation supports the following three types of contracts:

❑ Service contracts

❑ Message contracts

❑ Data contracts

How to Read XML File

XmlDocument doc = new XmlDocument();

 doc.Load(Server.MapPath("~/App_Data/sample.xml"));

 XmlNode root = doc.DocumentElement;

 AuthorLiteral.Text = root.SelectSingleNode("author").ChildNodes[0].Value;

 TitleLiteral.Text = root.SelectSingleNode("title").ChildNodes[0].Value;

 BodyLiteral.Text = root.SelectSingleNode("body").ChildNodes[0].Value;

--

dim mycountries=New DataSet
 mycountries.ReadXml(MapPath("countries.xml"))
 rb.DataSource=mycountries
 rb.DataValueField="value"
 rb.DataTextField="text"
 rb.DataBind()

Both String and StringBuilder are classes used to handle strings.

The most common operation with a string is concatenation. This activity has to be performed very efficiently. When we use the "String" object to concatenate two strings, the first string is combined to the other string by creating a new copy in the memory as a string object, and then the old string is deleted. This process is a little long. Hence we say "Strings are immutable".

When we make use of the "StringBuilder" object, the Append method is used. This means, an insertion is done on the existing string. Operation on StringBuilder object is faster than String operations, as the copy is done to the same location. Usage of StringBuilder is more efficient in case large amounts of string manipulations have to be performed.

Mutable & Immutable
System.StringBuilder is mutable where variety of operations can be performed
System.String is immutable variable value may change BUT original data value will be discarded and new value will be in memory.

1. Knowing when to use StringBuilder

2. Comparing Non-Case-Sensitive Strings

str1.ToLower() == str2.ToLower()

string.Compare(str1, str2, true) == 0 //Ignoring cases

The C# string.Compare function returns an integer that is equal to 0 when the two strings are equal.

3. Use string.Empty

if (str == "")

with:

if (str == string.Empty)

This is simply better programming practice and has no negative impact on performance.

Note, there is a popular practice that checking a string's length to be 0 is faster than comparing it to an empty string. While that might have been true once it is no longer a significant performance improvement. Instead stick with string.Empty.

4. Replace ArrayList with List<>

ArrayList are useful when storing multiple types of objects within the same list. However if you are keeping the same type of variables in one ArrayList, you can gain a performance boost by using List<> objects instead.

Take the following ArrayList:

ArrayList intList = new ArrayList();

intList.add(10);

return (int)intList[0] + 20;

Notice it only contains intergers. Using the List<> class is a lot better. To convert it to a typed List, only the variable types need to be changed:

List<int> intList = new List<int>();

intList.add(10)

return intList[0] + 20;

There is no need to cast types with List<>. The performance increase can be especially significant with primitive data types like integers.

5. Use && and || operators

When building if statements, simply make sure to use the double-and notation (&&) and/or the double-or notation (||), (in Visual Basic they are AndAlso and OrElse).

If statements that use & and | must check every part of the statement and then apply the "and" or "or". On the other hand, && and ||go thourgh the statements one at a time and stop as soon as the condition has either been met or not met.

Executing less code is always a performace benefit but it also can avoid run-time errors, consider the following C# code:

if (object1 != null && object1.runMethod())

If object1 is null, with the && operator, object1.runMethod()will not execute. If the && operator is replaced with &,object1.runMethod() will run even if object1 is already known to be null, causing an exception.

6. Smart Try-Catch

Try-Catch statements are meant to catch exceptions that are beyond the programmers control, such as connecting to the web or a device for example. Using a try statement to keep code "simple" instead of using if statements to avoid error-prone calls makes code incredibly slower. Restructure your source code to require less try statements.

7. Replace Divisions

C# is relatively slow when it comes to division operations. One alternative is to replace divisions with a multiplication-shift operation to further optimize C#. The article explains in detail how to make the conversion.

Conclusion

As you can see these are very simple C# code optimizations and yet they can have a powerful impact on the performance of your application. To test out the optimizations, try out the free Optimizing Utility.

S.No.
View
Stored Procedure

1
Does not accepts parameters
Accept parameters

2
Can be used as a building block in large query.
Can not be used as a building block in large query.

3
Can contain only one single Select query.
Can contain several statement like if, else, loop etc.

4
Can not perform modification to any table.
Can perform modification to one or several tables.

5
Can be used (sometimes) as the target for Insert, update, delete queries.
Can not be used as the target for Insert, update, delete queries.

I. Scalar Functions

Scalar functions return a data type such as int, money, varchar, real, etc. They can be used anywhere a built-in SQL function is allowed. The syntax for a scalar function is the following:

CREATE FUNCTION [owner_name.] function_name

 ([{ @parameter_name scalar_parameter_type [= default]} [,..n]])

RETURNS scalar_return_type

[WITH <function_option> >::={SCHEMABINDING | ENCRYPTION]

[AS]

BEGIN

 function_body

 RETURN scalar_expression

END

A simple scalar function to cube a number would look like this:

CREATE FUNCTION dbo.Cube(@fNumber float)

 RETURNS float

AS

BEGIN

 RETURN(@fNumber * @fNumber * @fNumber)

END

Surprisingly, user-defined functions (UDFs) support recursion. Here is an

SQL Server 2000 UDF using the standard factorial example:

CREATE FUNCTION dbo.Factorial (@iNumber int)

RETURNS INT

AS

BEGIN

DECLARE @i int

 IF @iNumber <= 1

 SET @i = 1

 ELSE

 SET @i = @iNumber * dbo.Factorial(@iNumber - 1)

RETURN (@i)

END

II. In-Line Table Functions

In-line table functions are functions that return the output of a single SELECT statement as a table data type. Since this type of function returns a table, the output can be used in joins of queries as if it was a standard table. The syntax for an in-line table function is as follows:

CREATE FUNCTION [owner_name.] function_name

 ([{ @parameter_name scalar_parameter_type [= default]} [,..n]])

RETURNS TABLE

[WITH <function_option>::={SCHEMABINDING | ENCRYPTION}]

RETURN [(] select_statement [)]

An in-line function to return the authors from a particular state would

look like this:

CREATE FUNCTION dbo.AuthorsForState(@cState char(2))

RETURNS TABLE

AS

RETURN (SELECT * FROM Authors WHERE state = @cState)

III. Multistatement Table Functions Multistatement table functions are similar to stored procedures except that they return a table. This type of function is suited to address situations where more logic is required than can be expressed in a single query. The following is the syntax for a multistatement table function:

CREATE FUNCTION [owner_name.] function_name

 ([{ @parameter_name scalar_parameter_type [= default]} [,..n]])

RETURNS TABLE

[WITH <function_option> >::={SCHEMABINDING | ENCRYPTION]

[AS]

BEGIN

 function_body

 RETURN

END

Hierarchical data, such as an organizational structure, is an example of data that cannot be gathered in a single query. The Northwind Company database's Employees table contains a field called ReportsTo that contains the EmployeeID of the employee's manager. GetManagerReports is a multistatement table function that returns a list of the employees who report to a specific employee, either directly or indirectly.

.NET Remoting

.NET Remoting is a distributed objects infrastructure. It allows processes to share objects—to call methods on and access properties of objects that are hosted in different application domains within the same process, different processes executing on the same computer, on computers on an intranet, or on computers distributed over wide areas. .NET Remoting supports many different communications protocols, including the SOAP/HTTP protocol used by ASP.NET Web services. Support for other protocols makes it possible to provide much faster communications in .NET Remoting than would be possible with ASP.NET Web services.

The ASP.NET programming model is tied specifically to IIS, and is limited to creating Web services that use the producer/consumer model. .NET Remoting, on the other hand, can share objects from any type of application.

The .NET Remoting system, as an integral part of the .NET Framework, supports full .NET type system fidelity. You can pass any object across the wire to a client. This is in contrast to ASP.NET, which is limited to data types that can be expressed with WSDL and XSD.

Functions of the Common Type System

· To establish a framework that helps enable cross-language integration, type safety, and high performance code execution .

· To provide an object-oriented model that supports the complete implementation of many programming languages.

· To define rules that languages must follow, which helps ensure that objects written in different languages can interact with each other.

· The CTS also defines the rules that ensures that the data types of objects written in various languages are able to interact with each other.

· The CTS also specifies the rules for type visibility and access to the members of a type, i.e. the CTS establishes the rules by which assemblies form scope for a type, and the Common Language Runtime enforces the visibility rules.

· The CTS defines the rules governing type inheritance, virtual methods and object lifetime.

· Languages supported by .NET can implement all or some common data types

When rounding fractional values, the halfway-to-even ("banker's") method is used by default, throughout the Framework. Since version 2, "Symmetric Arithmetic Rounding" (round halves away from zero) is also available by programmer's option.[1]
· it is used to communicate with other languages

Globalization and Localization

Globalization is defined as the process of developing a program or an application so that it is usable across multiple cultures and regions, irrespective of the language and regional differences. For example, you have made a small inventory management program and you live in a region where English is the main language, assume England. Now, if you want to sell your program in a different country, let’s say Germany, then you need to make sure that your program displays and takes input in German language.

Localization is the process of creating content, input, and output data, in a region specific culture and language. Culture will decide date display settings (like, mm/dd/yyyy or dd/mm/yyyy), currency display formats etc. Now, the process by which we can make sure that our program will be localized is known as Internationalization or Globalization. In simpler terms, Globalization can be defined as the set of activities which will ensure that our program will run in regions with different languages and cultures.

So, globalization is related to intrinsic code changes to support such changes like using Resource files etc. Whereas, localization is the process of using a particular culture and regional info so that the program uses the local languages and culture. This means translating strings into a particular local language. This covers putting language specific strings in the resource files. Globalization starts in the main construction phase along with the code development. Localization generally comes later.

Serialization

Serialization is a process of converting an object into a stream of data so that it can be is easily transmittable over the network or can be continued in a persistent storage location. This storage location can be a physical file, database or ASP.NET Cache. Serialization is the technology that enables an object to be converted into a linear stream of data that can be easily passed across process boundaries and machines. This stream of data needs to be in a format that can be understood by both ends of a communication channel so that the object can be serialized and reconstructed easily. The advantage of serialization is the ability to transmit data across the network in a cross-platform-compatible format, as well as saving it in a persistent or non-persistent storage medium in a non-proprietary format. Serialization is used by Remoting, Web Services SOAP for transmitting data between a server and a client. De-serialization is the reverse; it is the process of reconstructing the same object later. The Remoting technology of .NET makes use of serialization to pass objects by value from one application domain to another. In this article I will discuss .NET's support for Serialization and how we can build a class that supports custom serialization.

The benefits of XML serialization include the following:

· Allows for complete and flexible control over the format and schema of the XML produced by serialization.

· Serialized format is both human-readable and machine-readable.

· Easy to implement. Does not require any custom serialization-related code in the object to be serialized.

The benefits of SOAP serialization include the following:

· Produces a fully SOAP-compliant envelope that can be processed by any system or service that understands SOAP.

· Supports either objects that implement the ISerializable interface to control their own serialization, or objects that are marked with the SerializableAttribute attribute.

· Can deserialize a SOAP envelope into a compatible set of objects.

· Can serialize and restore non-public and public members of an object.

The benefits of binary serialization include the following:

· It's the fastest serialization method because it does not have the overhead of generating an XML document during the serialization process.

· The resulting binary data is more compact than an XML string, so it takes up less storage space and can be transmitted quickly.

· Supports either objects that implement the ISerializable interface to control its own serialization, or objects that are marked with the SerializableAttribute attribute.

· Can serialize and restore non-public and public members of an object.

Cursors

Cursors are a looping construct built inside the database engine and come with a wide variety of features. Cursors allow you to fetch a set of data, loop through each record, and modify the values as necessary; then, you can easily assign these values to variables and perform processing on these values. Depending on the type of cursor you request, you can even fetch records that you’ve previously fetched.

Because a cursor is an actual object inside the database engine, there is a little overhead involved in creating the cursor and destroying it. Also, a majority of cursor operations occur in tempdb, so a heavily used tempdb will be even more overloaded with the use of cursors.

Enumeration

Enumeration is a great user defined data type in C#.Net and VB.NET. It is very useful in codereadability. It greatly increases the readability of code.

n enum is a value type with a set of related named constants often referred to as an enumerator list. They allow code to look a lot cleaner and easier to read by getting rid of "magic numbers", that is to say, they get rid of numbers which have a purpose within a module of code, but make the code harder to read. If a single number needs a definition to

Autopostback

Autopostback - Property of the control

IsPostback - Property of the Page class

Autopostback - get and set property to control postback on changes made for control.

for e.g.

this.ListBox1.AutoPostBack = true;

whenever user will select item, the page will get post back.

IsPostback - get property of the Page class, to check if page is post back i.e. if it is true then page has already executed Init function of the page else it is first time the page has requested to be executed

Definition and Usage

The AutoPostBack property is used to set or return whether or not an automatic post back occurs when the user presses "ENTER" or "TAB" in the TextBox control.

If this property is set to TRUE the automatic post back is enabled, otherwise FALSE. Default is FALSE.

Interoperability

Because computer systems commonly require interaction between new and older applications, the .NET Framework provides means to access functionality that is implemented in programs that execute outside the .NET environment. Access to COM components is provided in the System.Runtime.InteropServices and System.EnterpriseServices namespaces of the framework; access to other functionality is provided using the P/Invoke feature.

Common Language Runtime Engine

The Common Language Runtime (CLR) is the execution engine of the .NET Framework. All .NET programs execute under the supervision of the CLR, guaranteeing certain properties and behaviors in the areas of memory management, security, and exception handling.

Language Independence

The .NET Framework introduces a Common Type System, or CTS. The CTS specification defines all possible datatypes and programming constructs supported by the CLR and how they may or may not interact with each other conforming to the Common Language Infrastructure (CLI) specification. Because of this feature, the .NET Framework supports the exchange of types and object instances between libraries and applications written using any conforming .NET language.

Base Class Library

The Base Class Library (BCL), part of the Framework Class Library (FCL), is a library of functionality available to all languages using the .NET Framework. The BCL provides classes which encapsulate a number of common functions, including file reading and writing, graphic rendering, database interaction, XML document manipulation and so on.

Simplified Deployment

The .NET Framework includes design features and tools that help manage the installation of computer software to ensure that it does not interfere with previously installed software, and that it conforms to security requirements.

Security

The design is meant to address some of the vulnerabilities, such as buffer overflows, that have been exploited by malicious software. Additionally, .NET provides a common security model for all applications.

Portability

The design of the .NET Framework allows it theoretically to be platform agnostic, and thus cross-platform compatible. That is, a program written to use the framework should run without change on any type of system for which the framework is implemented. While Microsoft has never implemented the full framework on any system except Microsoft Windows, the framework is engineered to be platform agnostic,[2] and cross-platform implementations are available for other operating systems (see Silverlight and the Alternative implementations section below). Microsoft submitted the specifications for the Common Language Infrastructure (which includes the core class libraries, Common Type System, and the Common Intermediate Language),[3][4][5] the C# language,[6] and the C++/CLI language[7] to both ECMA and the ISO, making them available as open standards. This makes it possible for third parties to create compatible implementations of the framework and its languages on other platforms.

Common Language Infrastructure

Common Language Infrastructure (CLI)Main article: Common Language Infrastructure

The purpose of the Common Language Infrastructure, is to provide a language-neutral platform for application development and execution, including functions for Exception handling, Garbage Collection, security, and interoperability. By implementing the core aspects of the .NET Framework within the scope of the CLI, this functionality will not be tied to a single language but will be available across the many languages supported by the framework. Microsoft's implementation of the CLI is called the Common Language Runtime, or CLR.

Assembly

The CIL code is housed in .NET assemblies. As mandated by specification, assemblies are stored in the Portable Executable (PE) format, common on the Windows platform for all DLL and EXE files. The assembly consists of one or more files, one of which must contain the manifest, which has the metadata for the assembly. The complete name of an assembly (not to be confused with the filename on disk) contains its simple text name, version number, culture, and public key token. The public key token is a unique hash generated when the assembly is compiled, thus two assemblies with the same public key token are guaranteed to be identical from the point of view of the framework.[dubious – discuss] A private key can also be specified known only to the creator of the assembly and can be used for strong naming and to guarantee that the assembly is from the same author when a new version of the assembly is compiled (required to add an assembly to the Global Assembly Cache).

Metadata

All CIL is self-describing through .NET metadata. The CLR checks the metadata to ensure that the correct method is called. Metadata is usually generated by language compilers but developers can create their own metadata through custom attributes. Metadata contains information about the assembly, and is also used to implement the reflective programming capabilities of .NET Framework.

Security

.NET has its own security mechanism with two general features: Code Access Security (CAS), and validation and verification. Code Access Security is based on evidence that is associated with a specific assembly. Typically the evidence is the source of the assembly (whether it is installed on the local machine or has been downloaded from the intranet or Internet). Code Access Security uses evidence to determine the permissions granted to the code. Other code can demand that calling code is granted a specified permission. The demand causes the CLR to perform a call stack walk: every assembly of each method in the call stack is checked for the required permission; if any assembly is not granted the permission a security exception is thrown.

When an assembly is loaded the CLR performs various tests. Two such tests are validation and verification. During validation the CLR checks that the assembly contains valid metadata and CIL, and whether the internal tables are correct. Verification is not so exact. The verification mechanism checks to see if the code does anything that is 'unsafe'. The algorithm used is quite conservative; hence occasionally code that is 'safe' does not pass. Unsafe code will only be executed if the assembly has the 'skip verification' permission, which generally means code that is installed on the local machine.

.NET Framework uses Application Domains as a mechanism for isolating code running in a process. Application Domains can be created and code can be loaded into or unloaded from them independent of other Application Domains. This helps increase the fault tolerance of the application, as faults or crashes in one Application Domain do not affect the rest of the application. Application Domains can also be configured independently with different security privileges. This can help increase the security of the application by isolating potentially unsafe code. The developer, however, has to split the application into subdomains; it is not done by the CLR.

The .NET Framework includes a set of standard class libraries. The class library is organized in a hierarchy of namespaces. Most of the built in APIs are part of either System.* or Microsoft.* namespaces. These class libraries implement a large number of common functions, such as file reading and writing, graphic rendering, database interaction, and XML document manipulation, among others. The .NET class libraries are available to all CLI compliant languages. The .NET Framework class library is divided into two parts: the Base Class Library and the Framework Class Library.

The Base Class Library (BCL) includes a small subset of the entire class library and is the core set of classes that serve as the basic API of the Common Language Runtime.[8] The classes in mscorlib.dll and some of the classes in System.dll and System.core.dll are considered to be a part of the BCL. The BCL classes are available in both .NET Framework as well as its alternative implementations including .NET Compact Framework, Microsoft Silverlight and Mono.

The Framework Class Library (FCL) is a superset of the BCL classes and refers to the entire class library that ships with .NET Framework. It includes an expanded set of libraries, including Windows Forms, ADO.NET, ASP.NET, Language Integrated Query, Windows Presentation Foundation, Windows Communication Foundation among others. The FCL is much larger in scope than standard libraries for languages like C++, and comparable in scope to the standard libraries of Java.

Memory management

The .NET Framework CLR frees the developer from the burden of managing memory (allocating and freeing up when done); instead it does the memory management itself even though there are no actual guarantees as to when the Garbage Collector will perform its work, unless an explicit double-call is issued[citation needed]. To this end, the memory allocated to instantiations of .NET types (objects) is done contiguously[9] from the managed heap, a pool of memory managed by the CLR. As long as there exists a reference to an object, which might be either a direct reference to an object or via a graph of objects, the object is considered to be in use by the CLR. When there is no reference to an object, and it cannot be reached or used, it becomes garbage. However, it still holds on to the memory allocated to it. .NET Framework includes a garbage collector which runs periodically, on a separate thread from the application's thread, that enumerates all the unusable objects and reclaims the memory allocated to them.

Class Libraries

The .NET Garbage Collector (GC) is a non-deterministic, compacting, mark-and-sweep garbage collector. The GC runs only when a certain amount of memory has been used or there is enough pressure for memory on the system. Since it is not guaranteed when the conditions to reclaim memory are reached, the GC runs are non-deterministic. Each .NET application has a set of roots, which are pointers to objects on the managed heap (managed objects). These include references to static objects and objects defined as local variables or method parameters currently in scope, as well as objects referred to by CPU registers.[9] When the GC runs, it pauses the application, and for each object referred to in the root, it recursively enumerates all the objects reachable from the root objects and marks them as reachable. It uses .NET metadata and reflection to discover the objects encapsulated by an object, and then recursively walk them. It then enumerates all the objects on the heap (which were initially allocated contiguously) using reflection. All objects not marked as reachable are garbage.[9] This is the mark phase.[10] Since the memory held by garbage is not of any consequence, it is considered free space. However, this leaves chunks of free space between objects which were initially contiguous. The objects are then compacted together to make used memory contiguous again.[9][10] Any reference to an object invalidated by moving the object is updated to reflect the new location by the GC.[10] The application is resumed after the garbage collection is over.

The GC used by .NET Framework is actually generational.[11] Objects are assigned a generation; newly created objects belong to Generation 0. The objects that survive a garbage collection are tagged as Generation 1, and the Generation 1 objects that survive another collection are Generation 2 objects. The .NET Framework uses up to Generation 2 objects.[11] Higher generation objects are garbage collected less frequently than lower generation objects. This helps increase the efficiency of garbage collection, as older objects tend to have a larger lifetime than newer objects.[11] Thus, by removing older (and thus more likely to survive a collection) objects from the scope of a collection run, fewer objects need to be checked and compacted.[11]

IIS

IIS means its nothing but an a Webserver for webapplications.Actually if u want to work with any webapplication u need one server that is what IIS in the Macine.
IIS comes as a free with your Widnows OS
and you just install it
The main uSe of this IIS is Developing Client Server type of Applications like Webapplication in .Net

When ever ur making a request for any weballication the IIS will pass the request to ASP engine which will comes with .net framework.and execute it through CLR and finally it sends to client.

IIS (Internet Information Server) is a group of Internet servers (including a Web or Hypertext Transfer Protocol server and a File Transfer Protocol server) with additional capabilities for Microsoft's Windows NT and Windows 2000 Server operating systems. IIS is Microsoft's entry to compete in the Internet server market that is also addressed by Apache, Sun Microsystems, O'Reilly, and others. With IIS, Microsoft includes a set of programs for building and administering Web sites, a search engine, and support for writing Web-based applications that access databases. Microsoft points out that IIS is tightly integrated with the Windows NT and 2000 Servers in a number of ways, resulting in faster Web page serving.
A typical company that buys IIS can create pages for Web sites using Microsoft's Front Page product (with its WYSIWYG user interface). Web developers can use Microsoft's Active Server Page (ASP)technology, which means that applications - including ActiveX controls - can be imbedded in Web pages that modify the content sent back to users. Developers can also write programs that filter requests and get the correct Web pages for different users by using Microsoft's Internet Server Application Program Interface (ISAPI) interface. ASPs and ISAPI programs run more efficiently than common gateway interface (CGI) and server-side include (SSI) programs, two current technologies. (However, there are comparable interfaces on other platforms.)

Microsoft includes special capabilities for server administrators designed to appeal to Internet service providers (ISPs). It includes a single window (or "console") from which all services and users can be administered. It's designed to be easy to add components as snap-ins that you didn't initially install. The administrative windows can be customized for access by individual customers.

Microsoft has been criticized for IIS's susceptibility to computer virus attacks such as Code Red and Nimda.

virtual directory

A virtual directory represents a web application and it points to a physical folder in your computer.

A web application is accessed using a virtual directory name instead of a physical folder name. For example, if you have a web application called "Shopcart" in your machine, you will have a virtual directory for this web application. You will access your web application using the URL httP://localhost/Shopcart. If your virtaul directory name is "Test", then your web application url will be "http://localhost/Test".

Assume you have a web application called "Shopcart", created under the physical folder "C:\MyProjects\Shopcart".

You can go to IIS and see this virtual directory listed. Right click on this virtual directory name in IIS and see the properties. You can see that this virtual directory is pointing to the physical location "C:\MyProjects\Shopcart".

If you have a file called "File1.aspx" under the folder "C:\MyProjects\Shopcart\", then you can access this file using Internet Explorer with the URL "http://localhost/Shopcart/File1.aspx"

Globalization

Globalization is the process of designing and developing a software product that function for multiple cultures. A web forms page have two culture values ,Culture and UICulture. Culture is used to determine culture dependent function such as Date, Currency. So it is used for date formatting ,number formatting. UICulture values is used to determine which language the resources should load that is which UIstring the resource should use. The two culture settings do not need to have same values. It may be different depending on the application.
Setting Culture and UICulture

1. Through Web.Config

<configuration>
<system.web>
<globalization fileEncoding="utf-8" requestEncoding="utf-8"responseEncoding="utf-8" culture="en-US" uiCulture="fr-FR"/>
</system.web>
</configuration>

2. In Code-inline (aspx) Page

<%@ Page UICulture="fr" Culture="en-US"%>

3. In Code-Behind (aspx.cs) Page

Thread.CurrentThread.CurrentCulture = CultureInfo.CreateSpecificCulture ("fr-FR");
Thread.CurrentThread.CurrentUICulture=new CultureInfo("fr-FR");

ASP.NET wont automatically translate the contents in one language to another language by using Culture. For this we need to put strings in resources file and have to load the strings based on the culture. Let us see how to create resources and use.

Resources

Resources represents embedded data such as strings or images, which can be retrieved during runtime and displayed in the user interface. Resource Management is a feature of .NET framework which is used to extract localized element from source code and to store them with a string key as resources . At runtime, ResourceManager class instance is used to resolve key to the original resource or localized version. Resources can be stored as an independent file or part of an assembly.

ResourceWriter and resgen.exe can be used to create .resources file. To include .resources file inside an assembly use related compiler switch or Al.exe.

Create Resource Text Files:

In resource.en-US.txt
Test = Hello there, friend!

In resource.fr-FR.txt
Test = Bonjour lÃ , ami!

Generate .resources file:

Goto VisualStudio.Net command prompt and use resgen command utility to generate .resources file

resgen resource.en-US.txt
resgen resource.fr-FR.txt

This commands will create .resources file.

In TestGlobalization.aspx Page,

<asp:RadioButtonList id="RadioButtonList1" style="Z-INDEX: 101; LEFT:144px; POSITION: absolute; TOP: 144px"runat="server" AutoPostBack="True">
<asp:ListItem Value="en-US" Selected="True">English</asp:ListItem>
<asp:ListItem Value="fr-FR">French</asp:ListItem>
</asp:RadioButtonList>

In TestGlobalization.aspx.cs Page,on Page_Load Event

CultureInfo objCI = new CultureInfo (RadioButtonList1 .SelectedValue .ToString ()) ;
Thread.CurrentThread.CurrentCulture = objCI;
Thread.CurrentThread.CurrentUICulture = objCI;
ResourceManager rm = ResourceManager .CreateFileBasedResourceManager ("resource", Server.MapPath("resources") + Path.DirectorySeparatorChar, null);
Response.Write(rm.GetString("Test"));

This will output the content based on the option selected. Hope this article would have helped you all.

Data Provider

The Data Provider is responsible for providing and maintaining the connection to the database. A DataProvider is a set of related components that work together to provide data in an efficient and performance driven manner. The .NET Framework currently comes with two DataProviders: the SQL Data Provider which is designed only to work with Microsoft's SQL Server 7.0 or later and the OleDb DataProvider which allows us to connect to other types of databases like Access and Oracle. Each DataProvider consists of the following component classes:

The Connection object which provides aconnection to the database
The Command object which is used to execute a command
The DataReader object which provides a forward-only, read only, connected recordset
The DataAdapter object which populates a disconnected DataSet with data and performs update

Service Contracts

Service contracts define the operations that a service will perform when executed. They tell the outside

world a lot about the service such as message data types, operation locations, the protocols the client

will need in order to communicate with the service, and the operations the service provides.

In the book publisher example, a service might exist that has a PlaceOrder operation, which accepts

order information (name, title, payment type, and so on) and returns success or failure (and if success,

an order number). In this scenario the service contract could inform the clients that the service contract

contains a PlaceOrder operation and the address of this operation and the type of protocols needed to

communicate with this service. As well, the information could include the data types needed for this

message.

Message Contracts

Message contracts allow the control of SOAP messages that are produced and consumed by WCF.

Basically it boils down to being able to customize the format of contract parameters and the placing of

elements within a SOAP message, or in other words, having control of the structure as well as the contents

of a SOAP message. If you have this need, then this is for you.

It is highly recommended that if you don’t need this level of control, you should consider using data

contracts.

Data Contracts

Data contracts specifically define the data that is being exchanged between a client and service. The data

contract is an agreement, meaning that the client and the service must agree on the data contract in order

for the exchange of data to take place. Note that they don’t have to agree on the data types, just the

contract.

This is made available due to the fact that all data is serialized to XML and deserialized from XML during

the processing of the message. This means that a number of different types can be serialized with no

extra preparation. These types include .NET primitive types such as System.Boolean and System.Single,

as well as special types (System.DateTime, for example).

Serialization is provided via a new serialization engine in WCF, called the DataContractSerializer. This

engine provides the translation between .NET Framework objects and XML, and vice versa. Serialization

occurs at runtime when the message is created and ready to send. WCF selects the serializer based on

service contract encoding. The DataContractSerializer is used by default but you can also use the

XmlSerializer (currently used in ASMX) by annotating the service contract with an attribute, such as the

following:

[ServiceContract, XmlSerializerFormat]

public interface IWCFService

{

//add Operation Contracts...

Page Request

Now that we’ve seen what the code looks like from the web page programmer’s point of view, let’s take a look at the implementation. We need to replace the text in the controls with language specific strings after the page is constructed and initialized but before it renders the HTML into the output stream. In order to do this, we need to hook into the ASP.NET HTTP pipeline. The figure below depicts the pipeline.

When a web request comes from the network, IIS handles it and passes it over to aspnet_isapi.dll which is registered to handle requests for .ASPX pages. aspnet_isapi.dll then passes the request to the appropriateHttpApplication instance. The HttpApplication massages the request and hands it over to one or moreHttpModule objects. HttpModules perform tasks such as authentication and caching, and they get to act in the pipeline before, during and after an HttpHandler (i.e., the web page class) processes the request. By implementing an HttpModule we can do the localization logic at the right place in the pipeline.

Implementing an HttpModule boils down to creating a class that implements the IHttpModule interface. It has one method of interest, void Init(HttpApplication), in which we prepare to handle thePreRequestHandlerExecute event of the HttpApplication:

CONTRACTS

In WCF, all services expose contracts. The contract is a platform-neutral and standard way of describing what the service does.

WCF defines four types of contracts.

Service contracts

Describe which operations the client can perform on the service.

There are two types of Service Contracts.

ServiceContract - This attribute is used to define the Interface.

OperationContract - This attribute is used to define the method inside Interface.

[ServiceContract]

interface IMyContract

{

 [OperationContract]

 string MyMethod();

}

class MyService : IMyContract

{

 public string MyMethod()

 {

 return "Hello World";

 }

}

Data contracts

Define which data types are passed to and from the service. WCF defines implicit contracts for built-in types such as int and string, but we can easily define explicit opt-in data contracts for custom types.

There are two types of Data Contracts.

DataContract - attribute used to define the class

DataMember - attribute used to define the properties.

[DataContract]

class Contact

{

 [DataMember]

 public string FirstName;

 [DataMember]

 public string LastName;

}

If DataMember attributes are not specified for a properties in the class, that property can't be passed to-from web service.

Fault contracts

Define which errors are raised by the service, and how the service handles and propagates errors to its clients.

Message contracts

Allow the service to interact directly with messages. Message contracts can be typed or untyped, and are useful in interoperability cases and when there is an existing message format we have to comply with.

The Web Services Description Language

(WSDL) is an XML language for describing Web services as a set of network endpoints that operate on messages. A WSDL service description contains an abstract definition for a set of operations and messages, a concrete protocol binding for these operations and messages, and a network endpoint specification for the binding.

Universal Description Discovery and Integration (UDDI) provides a method for publishing and finding service descriptions. The UDDI data entities provide support for defining both business and service information. The service description information defined in WSDL is complementary to the information found in a UDDI registry. UDDI provides support for many different types of service descriptions. As a result, UDDI has no direct support for WSDL or any other service description mechanism.

The UDDI organization, UDDI.org, has published a best practices document titled Using WSDL in a UDDI Registry 1.05 (seeResources). This best practices document describes some of the elements on how to publish WSDL service descriptions in a UDDI registry. The purpose of this article is to augment that information. The primary focus is on how to map a complete WSDL service description into a UDDI registry, which is required by existing WSDL tools and runtime environments. The information in this article adheres to the procedures outlined in that best practices document and is consistent with the specifications for WSDL 1.1, UDDI 1.0, and UDDI 2.0 (see Resources).

An Overview of UDDI and WSDL

Before describing the process for mapping WSDL service descriptions into a UDDI registry, it is important to understand the UDDI data types and the primary WSDL document types.

UDDI data types

There are four primary data types in a UDDI registry: businessEntity, businessService, bindingTemplate, and tModel. Figure 1shows the relationship between all of these data types.

Figure 1. UDDI data types

WSDL document types

To assist with publishing and finding WSDL service descriptions in a UDDI Registry, WSDL documents are divided into two types: service interfaces and service implementations (see Figure 2).

Figure 2. WSDL document types

A service interface is described by a WSDL document that contains the types, import, message, portType, and binding elements. A service interface contains the WSDL service definition that will be used to implement one or more services. It is an abstract definition of a Web service, and is used to describe a specific type of service.

A service interface document can reference another service interface document using an import element. For example, a service interface that contains only the message and portType elements can be referenced by another service interface that contains only bindings for the portType.

The WSDL service implementation document will contain the import and service elements. A service implementation document contains a description of a service that implements a service interface. At least one of the import elements will contain a reference to the WSDL service interface document. A service implementation document can contain references to more than one service interface document.

The import element in a WSDL service implementation document contains two attributes. The namespace attribute value is a URL that matches the targetNamespace in the service interface document. The location attribute is a URL that is used to reference the WSDL document that contains the complete service interface definition. The binding attribute on the port element contains a reference to a specific binding in the service interface document.

The service interface document is developed and published by the service interface provider. The service implementation document is created and published by the service provider. The roles of the service interface provider and service provider are logically separate, but they can be the same business entity.

Back to top
Publishing and finding WSDL descriptions

This section describes the process for publishing and finding a complete WSDL service description. A complete WSDL service description is a combination of a service interface and a service implementation document.

Since the service interface represents a reusable definition of a service, it is published in a UDDI registry as a tModel. The service implementation describes instances of a service. Each instance is defined using a WSDL service element. Each service element in a service implementation document is used to publish a UDDI businessService.

When publishing a WSDL service description, a service interface must be published as a tModel before a service implementation is published as a businessService.

Figure 3 contains an overview of the mapping from WSDL to UDDI. This mapping will be described in the following sections.

Figure 3. Overview of WSDL to UDDI mapping

Publishing service interfaces

A service interface is published as a tModel in a UDDI registry. The tModel is published by the service interface provider. Some elements in the tModel are constructed using the information from the WSDL service interface description.

A UDDI business registration consists of three components:

White Pages — address, contact, and known identifiers;

Yellow Pages — industrial categorizations based on standard taxonomies;

Green Pages — technical information about services exposed by the business.

White Pages

White pages give information about the business supplying the service. This includes the name of the business and a description of the business - potentially in multiple languages. Using this information, it is possible to find a service about which some information is already known (for example, locating a service based on the provider's name).[6]

Contact information for the business is also provided - for example the businesses address and phone number; and other information such as the Dun & Bradstreet Universal Numbering System number.

Yellow Pages

Yellow pages provide a classification of the service or business, based on standard taxonomies. These include the Standard Industrial Classification (SIC), the North American Industry Classification System (NAICS) [7], or the United Nations Standard Products and Services Code (UNSPSC) .

Because a single business may provide a number of services, there may be several Yellow Pages (each describing a service) associated with one White Page (giving general information about the business).

Green Pages

Green pages are used to describe how to access a Web Service, with information on the service bindings. Some of the information is related to the Web Service - such as the address of the service and the parameters, and references to specifications of interfaces[1]. Other information is not related directly to the Web Service - this includes e-mail, FTP, CORBA and telephone details for the service. Because a Web Service may have multiple bindings (as defined in its WSDL description), a service may have multiple Green Pages, as each binding will need to be accessed differently.

UDDI Nodes & Registry

UDDI nodes are servers which support the UDDI specification and belong to a UDDI registry while UDDI registries are collections of one or more nodes.

SOAP is an XML-based protocol to exchange messages between a requester and a provider of a Web Service. The provider publishes the WSDL to UDDI and the requester can join to it using SOAP.

Static Class

public class StaticTest

{

 public static int a = 100;

 public StaticTest() // Default Constructor

{

 a = 200;

}

 public StaticTest(int A, int B) // Normal Constructor

 {

 a = A + B;

 }

 static StaticTest() // Static Constructor

 {

 a = 100 + 100+100;

 }

 public int Test() // Normal method

 {

 return a + 100;

 }

 public static int Test1() // Static method

 {

 return a + 200;

 }

 public static int x // Static Get Set Property

 {

 get;

 set;

 }

}

--

protected void btnSatic_Click(object sender, EventArgs e)

 {

 string stVar;

 StaticTest objstatic1 = new StaticTest(); // Default Constructor

 StaticTest objstatic2 = new StaticTest(100,200); // Normal Constructor

 stVar= StaticTest.a.ToString();

 objstatic2.Test(); // Normal method

 StaticTest.Test1(); // Static method

 StaticTest.x = 100; // Static Set Property

 a = StaticTest.x; // Static Get Property

 }

Interface And Abstract

public partial class InterfaceTestPage : System.Web.UI.Page,Testing,IDisposable

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 public string HelloWorld(string str)

 {

 return "MyWorld";

 }

 public int AddTwoNumbers()

 {

 return 2 + 8;

 }

}

interface Testing

{

 string HelloWorld(string Msg);

 int AddTwoNumbers();

 }

abstract class abstractClass

{

 public abstract string HelloWorld(string Msg);

 public virtual int AddTwoNumbers()

 {

 return 12;

 }

}

Session Mode in ASP.NET

Storage location

session mode="inproc"...means the session will be stored on the webserver within u r application
session mode="outproc"....means session will be stored on the server outside u r application
session mode="stateserver"...means session will be stored in a temporary memory in the database
session mode="sqlserver"...means session will be stored in the databsae permanently.

InProc - (The Default) Session state exists within the process the web is using

StateServer - Session data is sent to the configured stateserver service

SQLServer - Session data is store in the configured sql server database

InProc - session kept as live objects in web server (aspnet_wp.exe). Use "cookieless" configuration in web.config to "munge" the sessionId onto the URL (solves cookie/domain/path RFC problems too!)

StateServer - session serialized and stored in memory in a separate process (aspnet_state.exe). State Server can run on another machine

SQLServer - session serialized and stored in SQL server

Performance

InProc - Fastest, but the more session data, the more memory is consumed on the web server, and that can affect performance.

StateServer - When storing data of basic types (e.g. string, integer, etc), in one test environment it's 15% slower than InProc. However, the cost of serialization/deserialization can affect performance if you're storing lots of objects. You have to do performance testing for your own scenario.

SQLServer - When storing data of basic types (e.g. string, integer, etc), in one test environment it's 25% slower than InProc. Same warning about serialization as in StateServer.

